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C. Mattrand∗1, A. Béakou1, K. Charlet1
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Abstract

This paper focuses on modeling the scatter observed in flax fiber morphology. The proposed
strategy is here based on the development of the radial distance of each 2D-fiber section to its
centroid using Fourier basis functions. The Fourier coefficients as well as the maximal radial
distance are considered as random variables. They are inferred from a fairly huge set of 2D
optical micrographs. This methodology allows us to capture randomness in some geometrical
parameters that characterize flax fiber cross-sections such as the area and perimeter.

1. Introduction

Plant fibers, which are in essence renewable, have been gaining interest over the last decade due
to their appealing features. Among them, flax fibers for example exhibit competitive mechani-
cal properties and environmentaly friendly characteristics compared with some synthetic fibers
such as glass fibers [1]. Over recent years, flax fibers have therefore been gradually introduced
into composite materials as a potential alternative to synthetic reinforcements. The industrial
community is particularly open to these new partly green materials due to their lower carbon
footprint. Nevertheless, such natural fiber composites may show a marked variability of their
properties. This therefore requires large safety margins to ensure acceptable safety levels for
structural components of interest, albeit undefined, thereby reducing the interest of employing
natural fibers.

Scattering of derived composite behavior, i.e. at the macroscopic length scale, may partly re-
sult from randomness observed in flax fiber morphology and properties, i.e. at the microscopic
length scale. Flax fiber characteristics in fact reveal significant dispersions owing to their grow-
ing harvesting and processing conditions [2, 3]. Virtual testing [4] may provide a powerful
framework for studying the effect of such microstructural feature dispersions on the composite
behavior variability. This subsequently may serve to control its influence on the quality and
reliability of the resulting composite structures.

Micromechanical calculations have up to now mainly been developed for synthetic reinforced
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composites and metal materials, see for example [5, 6, 7, 8]. From the authors’ knowledge,
only very few works have been devoted to the modeling of microstructures of natural fiber
composites in a stochastic sense, see for example [9], even if they have specific features and
might exhibit substantial scatter.

This paper proposes a first approach to modeling scatter in flax elementary fiber cross-sections
that allows the simulation of virtual fibers. This contributes to the statistical description of
the microstructure of composites reinforced with natural fibers, which is of prime interest for
further understanding how microstructural uncertainties propagate throughout the length scales.

2. Description of the statistical modeling procedure

2.1. Strategy

The complexity of flax fiber outer geometry precludes the use of standard shape with random
dimensions, such as a circle with a random radius, as shown in Figure 1. Cross-section shapes
range from quasi-circles to polygons with a variable number of edges.

Figure 1. Example of five flax fiber cross-sections observed on 2D optical micrographs. The scale bar indicates
20 µm.

The random geometry of elementary flax fiber cross-sections is here modeled based on a ran-
domized version of the truncated Fourier expansion of the radial distance of each point of a fiber
boundary from its centroid. The block diagram in Figure 2 shows the basic steps of the statisti-
cal modeling procedure as well as the simulation steps of new virtual flax fibers representative
of the observed ones. Some details of the strategy are given hereafter in subsection 2.2.

2.2. Details of strategy

2.2.1. Step 1: Image processing

A dozen 2D-sections of flax fibers embedded in an epoxy resin have been captured using an
optical microscope. First, traces of the stem bark, other flaws and burred pixels have been man-
ually removed from original micrographs. We also erase bundles which are not modeled in this
study. Then, images have been manually processed (to make binary operation for example) so
as to allow subsequent automatic extraction of fiber boundaries of one-pixel wide. The dozen
observed images feature Ne = 849 elementary fibers. Each ith elementary fiber outline forms
a closed curve composed of N(i) pixels, N(i) varying from one fiber to another. An interpo-
lation operation has first been applied to transform all coordinate vectors

(
xn

(i), yn
(i)
)

n=0,...,N(i)−1
,

∀i = 1, . . . , Ne, into equal length vectors with N coordinate points. This is more suitable for
subsequent statistical analyses. All coordinate vectors have then been reordered so that their
starting points

(
x0

(i), y0
(i)
)

coincide with boundary points at an angle of approximately zero.
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Figure 2. Block diagram of the strategy used for modeling and simulating flax fiber contours.
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2.2.2. Step 2: 1D Shape descriptor

The geometry of elementary fiber cross-sections does not exhibit large concavities. We therefore
consider in a first approach that 2D-boundary contours might be sufficiently well described by
their radial distance from their centroid. This is one of the simplest 1D shape descriptors [10].
The centroid-radii distance function ∀i = 1, . . . , Ne and ∀n = 0, . . . , N − 1 is expressed by:

rn
(i) =

√(
xn

(i) − xG
(i))2 + (yn

(i) − yG
(i))2 = max

n
rn

(i) × un
(i) (1)

where
(
xG

(i), yG
(i)
)

represents the centroid of the ith shape defined by the average of the boundary

coordinates and
(
un

(i)
)

is the normalized radius vector whose values are between 0 and 1.

2.2.3. Step 3: Analysis in the frequency domain

Each ith normalized centroid-radii function
(
un

(i)
)

n=0,..., N−1
is a discrete and periodic signal and

thereby can be analyzed in the frequency domain by means of its Fourier transform. The first
M-Fourier coefficients of this function for k ∈ {0, 1, . . . , M} are given by:


A0

(i) = 1
N

∑N−1
n=0 un

(i), k = 0

Ak
(i) = 2

N

∑N−1
n=0 un

(i)cos(2πkn/N), 1 ≤ k ≤ M

Bk
(i) = 2

N

∑N−1
n=0 un

(i)sin(2πkn/N), 1 ≤ k ≤ M

(2)

where M < N/2 is a truncation level that might be applied to the Fourier expansion in order
to reduce the number of variables to analyze hereafter. The reader should refer to [11] for full
details of Fourier analysis.

2.2.4. Step 4: Approximate shape reconstruction

Given its first M-Fourier coefficients, each ith normalized centroid-radii signal ∀n = 0, . . . , N−1
may be roughly calculated by:

un
(i) ≈ A0

(i) +

M∑
k=1

Ak
(i)cos(2πkn/N) + Bk

(i)sin(2πkn/N) (3)

which corresponds to its representation on the Fourier basis functions, that is to say, it is broken
down into the cosinus and sinus functions. Then, the centroid-radii distance is obtained by:

rn
(i) ≈ max

n
rn

(i) × un
(i) (4)

4



ECCM-16TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014

where max
n

rn
(i) is the maximum radial distance between boundary points and their centroid.

The approximate reconstruction of each ith shape, i.e. in the original 2D-coordinate space (x, y),
is finally achieved by:

{
xn

(i) ≈ xG
(i) + rn

(i)cos(θ)
yn

(i) ≈ yG
(i) + rn

(i)sin(θ) (5)

The current angle θ is here assumed to vary linearly between 0 and 2π with n ∈ 0, . . . , N − 1
for all Ne fibers, which is an approximation.

2.2.5. Step 5: Probabilistic modeling

The random shape of the ith fiber is fully described by a coordinate vector
(
xn

(i), yn
(i)
)

n=0,..., N−1
which should be viewed as the discretized realization of a bivariate process (Xn,Yn), n ∈ N.
Since the centroid-radii function alone is used to characterize the geometry of fibers, we can
replace the initial bivariate process (Xn,Yn) by a univariate process (rn), n ∈ N. Each ith real-
ization rn

(i) of this process, i = 1, . . . , Ne, is in turn modeled by means of a truncated Fourier
expansion, see Equations 2, 3 and 4, thereby reducing the number of parameters to be analyzed.
The proposed approach to model randomness in fiber shapes therefore lies in considering the
coefficients of the Fourier expansion namely A0, A1, . . . , AM, B1, . . . , BM and the maximum
radius namely max

n
rn as random variables.

The 2×M+2 random variable distributions are then fitted from a large collection of 2D images
of actual flax fibers. In fact, we may recall that Ne = 849 elementary flax fibers have been gath-
ered which leads to Ne = 849 outcomes A0

(i), A1
(i), . . . , AM

(i), B1
(i), . . . , BM

(i) and max
n

rn
(i) of

the random variables A0, A1, . . . , AM, B1, . . . , BM and max
n

rn. By using the Maximum Like-
lihood Estimation and the Kolmogorov-Smirnov test, distribution types and parameters have
been identified. The maximum radial distance max

n
rn is reasonably well modeled by a trun-

cated Gaussian distribution. A good fit is then observed between the A0-coefficient distribution
and a two parameter Weibull distribution. Finally, other Ak- and Bk-coefficients are found to
be approximately normally distributed. The reader should note that the correlation coefficients
between random variables are here neglected since they appear to be sufficiently low.

2.2.6. Step 6: Simulation of virtual flax fibers

Monte Carlo Simulation (MCS) is used to generate Nsim realizations of the above random vari-
ables. By applying the shape reconstruction procedure, see step 4 in subsection 2.2.4, Nsim

virtual flax fiber cross-sections are then produced.

3. Results and discussion

The ability of the proposed randomized Fourier expansion model to capture the intrinsic vari-
ability observed in the morphology of flax fibers is then assessed based on simulations per-
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formed in step 6, subsection 2.2.6. The statistical properties of usual morphometric factors in
virtual geometries are compared with those of observed flax fibers. Five morphometric factors,
namely the surface area, perimeter, Feret ratio, geodesic circularity and convexity, which fea-
ture size, elongation and tortuosity measurements, are computed for this purpose. The Feret
ratio is defined by the ratio of the Feret length over the Feret width. The geodesic circularity is
expressed by the ratio of the geodesic diameter over the diameter of a circular particle with the
same area. Finally, the convexity is given by the ratio of the fiber area over its convex hull area,
see [12] for further details on how to select relevant shape factors.

3.1. Selection of the truncation level

The influence of the truncation level M, which serves as an approximate reconstruction of the
original fiber (step 4), on the fiber geometry attributes is here studied. This is based on the
analysis of relative errors between morphometric factors of each observed ith flax fiber cross-
section and that of its approximate reconstruction, i ∈ {1, . . . , Ne = 849}. We here retain the M
value so that the 90%-relative errors of all shape factors are below an asymptotic value, which
leads to M = 5 as shown in Figure 3. Then, 12 subsequent random variables are used for
modeling randomness in fiber shapes.
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Figure 3. 90 - percentile of absolute relative error distributions (in %).

3.2. Statistical comparison of morphometric factors

Figures 4 (a) and (b) respectively plot the cumulative distributions of areas and perimeters of
observed flax fiber cross-sections, that of reconstructed flax shapes with M = 5 and that of
virtual flax fibers obtained through MCS. A very good agreement between observations and
simulations is obtained. Absolute relative errors on mean values are lower than 6%, the ones
on standard deviations are below 2.5%. Only the smallest percentiles of the distribution of
simulated flax fiber areas are slightly overestimated compared to those of the observed flax
fibers. The proposed methodology is therefore able to give a fairly good approximation of size
measurements of flax fiber shapes.

Regarding the elongation (Feret ratio) and tortuosity (geodesic circularity and convexity) param-
eters, see figures 5, 6 (a) and (b), the mean values of simulations are generally well recovered.
However, standard deviations are strongly underestimated (< −70%). This might be partly
explained by the choice of the 1D shape descriptor which here only models radial distance vec-
tors therefore discarding shape information encompassed in angular vectors. By resorting to
1D shape descriptor function that encloses both x-axis and y-axis information such limitations
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Figure 4. Cumulative probability plots of area and perimeter distributions for elementary flax fibers.
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Figure 5. Cumulative probability plot of Feret ratio distributions for elementary flax fibers.
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Figure 6. Cumulative probability plots of geodesic circularity and convexity distributions for elementary flax
fibers.

might be removed. One should replace the centroid-radii model by the complex coordinate
function within the strategy for example. The authors have performed such work in [13]. The
randomized Fourier expansion of the complex coordinate function is found to be relevant to
capture randomness in both size, elongation and tortuosity parameters of flax fiber shapes.

4. Conclusion

Plant fibers are directly sourced from nature and therefore suffer from inherent variability. This
may cause substantial dispersions of their derived composite properties which should therefore
be mastered so that natural fibers become more attractive for structural applications. This paper
proposes a procedure to model dispersions in the geometry of 2D flax fiber cross-sections. This
methodology is hoped to enable the simulation of virtual flax fiber shapes which are statistically
representative of the observed ones. Results show that virtual fibers have the same statistics as
those of observed fibers regarding the area and perimeter parameters. However, elongation and
tortuosity measurements are not rendered accurately enough by the method presented here. The
authors propose improvements for the proposed methodology in [13], which allows us to obtain
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a better match between observations and simulations for all morphometric parameters.

This work should be viewed as an essential step towards the numerical modeling of plant fiber
reinforced composites with the aim of gaining insights into the influence of microstructural
uncertainties on the macroscopic properties of the resulting composites.
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[13] C. Mattrand, A. Béakou, and K. Charlet. Numerical modeling of the flax fiber morphology
variability. submitted to Composites: Part A, 2014.

8


