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Abstract 

Density and hardness of partially and completely cross-linked RTM6 epoxy resin samples in 

the glassy state were analyzed as function of curing degree and curing history. The density of 

the partially cured samples decreases with increasing curing degree and shows a 

discontinuity in the so called transition region, which is related to the transition from rubber 

to glassy state during cross-linking. In contrast, hardness values are not sensitive to this 

transition and only show marginal variations as function of curing degree. To investigate the 

influence of curing history, all partially cured samples are submitted to a second, final curing 

cycle to achieve complete cross-linking. A significant reduction of density of all finally cured 

samples is found. 

 

 

1. Introduction  

 

Tetra-functional epoxy resins are characterized by excellent material properties and are 

widely used in aerospace industry for production of advanced composite materials, primarily 

carbon fiber reinforced polymers (CFRP).[1,2] After infiltration of the dry fiber fabric, the 

thermosetting polymer is cross-linked in a thermal curing process. The reactivity of the 

completely cross-linked epoxy resin is very low. Partial cross-linking maintains a particular 

rest reactivity of the resin and opens new options for CFRP production. For example a joining 

of partially cured and fresh resin systems can be realized, which allows an increased level of 

integral construction of CFRP components.[3] A subsequent final curing cycle guarantees the 

complete cross-linking of the new component. 

 

For a given chemical composition, the material properties of a cross-linked resin are 

determined in particular by the curing parameters, namely the curing temperatures, heating 

rates and curing durations.[4] During the curing process a chemical reaction between epoxy 

groups and reactive groups of the hardener takes place, which results in an increasing cross-

linking density of the polymer and the subsequent transitions from liquid through rubber to 

glassy state.[5] Annealing of a glassy polymer at temperatures below its glass transition 

temperature, results in physical ageing processes due to structural relaxations.[6,7,8] 

Therefore, cross-linking density, molecular arrangement and physical state of the cured resin 

depend sensitively on the curing parameters. To consider variations of existing curing cycles, 

knowledge of the relation between basic material properties and the curing history of partially 

and completely cross-linked epoxy resins is of interest and subject to actual research 

activities.[4,8,9,10,11,12] In epoxy resins with functionality higher than two a three 



ECCM16 - 16
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 2014 

 

2 

 

dimensional network forms during curing. A decrease of density and modulus with increasing 

cross-linking of the polymer chains is observed in the glassy state (above the gelation 

point).[8,13] Generally, relaxation processes due to physical ageing of the glassy epoxy resin 

result in an increase of density, modulus and hardness.[6,7,14,15] For several amorphous 

polymers a linear correlation of modulus, glass transition temperature and hardness is 

found.[15,16] 

 

In the actual work, the density and hardness of partially and completely cross-linked tetra-

functional epoxy resin samples are investigated as function of curing degree and curing 

history. Of particular interest are initial curing degrees within the so called transition region, 

where an abrupt increase of density and modulus was found.[17] To investigate the influence 

of the curing history, the partially cross-linked samples are submitted to a second, final curing 

cycle to achieve complete cross-linking. Density and hardness of the finally cured samples are 

measured and compared to the values after single cure. To determine the hardness the 

micromechanical method of nanoindentation is used. 

 

 

2. Experimental 

 

2.1. Preparation of partially and completely cross-linked epoxy resin samples  

 

All resin samples discussed in this work are manufactured of the mono-component epoxy 

resin system HexFlow ® RTM6 distributed by the Hexcel Corporation.[18] It is composed of 

the tetra-functional epoxy resin Tetraglycidyl Methylene Dianiline (TGMDA) and the 

hardeners 4,4’-Methylenebis(2,6-diethylaniline) (MDEA) and 4,4’-Methyylenebis(2-

Isopropyl-6-methylaniline) (M-MIPA). 

Modified curing cycles are used to obtain resin samples with defined partial curing degrees, as 

described in our previous work.[17] All cycles start with an isothermal curing period at a 

temperature of 120°C, technically used as infiltration cycle. To create a completely cross-

linked sample with a curing degree of nearly 100% the resin is cured subsequently for 2.5 

hours at the standard heating temperature of 180°C. To obtain samples with partial curing 

degrees between 50% and 80% the infiltration cycle is followed by an isothermal heat 

treatment at a reduced temperature of 135°C. The different curing degrees result from 

different durations of these isothermal heating cycles and are measured by differential 

scanning calorimetry.[17] For final curing, the partially cross-linked samples are submitted to 

a second curing cycle at 180°C for 2.5 hours. This second curing step transforms the partially 

cross-linked resin, e.g. with a curing degree of 60%, to a fully cross-linked resin further 

nominated as “60/100”. Partially/finally cured samples with other initial curing degrees are 

named equivalently. 

 

2.2. Micromechanical testing and density  

 

Hardness of the partly and completely cross-linked epoxy resin samples was measured by 

nanoindentation, as described in detail in Ref.[17]. During the loading-unloading indentation 

cycles the load-displacement curves F(h) are recorded. From the mainly elastic unloading 

curve the micromechanical parameters are quantified according to Refs.[19,20,21] 

The nanoindentation measurements were performed with a NanoTest 600 nanoindenter 

(Micromaterials Ltd.) and a Berkovich geometry indenter. The load controlled mode was used 

with loading and unloading rates of 2mN/sec. In all measurements a dwell time of 5sec was 

inserted between loading and unloading. As shown in our previous work, these measurement 
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parameters ensure undistorted, reproducible load-displacement curves and reliable modulus 

values. The impact of viscoelastic effects is minimized.[17] Before analysis, the raw data of 

the load-displacement measurement is corrected by the system compliance. To determine the 

contact stiffness, the unloading curve was fitted with a power law between 0.8·Fmax and Fmax. 

Average modulus values were obtained by investigation of several comparable resin regions. 

All average values are calculated from more than nine individual values. The measurements 

were performed on plane surfaces of the polymer samples, which were prepared by a grinding 

and polishing process of the fresh resin sample. 

Density of the polymer samples of different curing degrees is measured with a helium 

pycnometer AccuPyc II 1340 (Micromeritics). For each curing degree and ageing period at 

least three resin samples were analyzed. 

 

 

3. Experimental results and discussion 

 

In the following the density and hardness values of partially and completely cross-linked 

RTM6 epoxy resin samples as function of curing degree are presented. Besides, the influence 

of a second, final curing cycle on the resin properties is investigated. 

 

3.1. Density of partially and finally cross-linked epoxy resin 

 

During cross-linking of thermosetting network polymers density changes occur, which are 

caused by different, partly opposing effects. First, the increase of the covalent bond fraction 

causes a densification of the polymer with conversion. Secondly, the more and more restricted 

packing of polymer chains due to network formation results in a decrease of density with 

increasing cross-linking degree.[8,10] Besides, curing of a glassy material at temperatures 

below the glass transition temperature results in physical ageing induced structural relaxation 

processes and a densification.[6,7,14] The density of the resulting glassy thermoset as 

function of curing degree is determined by the individual contributions of the described 

effects, which in turn are effected by the chemical structure of polymer and hardener and the 

processing conditions. 

As shown in our previous work, the density values of partially cured RTM6 epoxy resin 

samples vary significantly as function of curing degree.[17]  

During the isothermal curing treatment a transition from rubber to glassy state takes place. For 

the presented partially cured samples this transition region corresponds to a curing degree of 

76.5% ± 2.5%. For lower curing degrees, the resin is in its rubber state at the end of curing. 

Here, the transition to glassy state takes place during cooling to room temperature. For higher 

curing degrees, the resin transforms to glassy state during curing and the ongoing curing acts 

as an annealing treatment. Therefore, structural relaxation processes of the polymer network 

start, resulting in a step-like increase of density in the transition region. The density of the 

partially and completely cross-linked resin samples as function of curing degree is shown in 

Figure 1. Also the transition region is indicated in the figure. 

  

All partially cross-linked resin samples are submitted to a second, final curing cycle at a 

temperature of 180°C. As shown in our previous work, the final curing cycle results in further 

cross-linking of all resin samples and the correspondent increase of curing degree and glass 

transition temperature.[17] The density values of all partially/finally cured samples are 

included in Figure 1. It has to be noted that the density values of the partially/finally cured 

samples are shown as function of their initial curing degree. Therefore, they are positioned at 
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the same initial curing degree as the density values of the corresponding partially cured 

sample. 
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Figure 1. Density of partially and partially/finally cured epoxy resin samples as function of initial curing degree. 

 

After final curing treatment, a decrease of density is observed for all partially/finally cured 

resin samples. The density values even are below that of the completely cured sample after 

single cure. The final heat treatment, performed at a curing temperature higher than the glass 

transition temperatures of the partially cross-linked samples, results in further cross-linking of 

the polymer and the correspondent reduction of density.[4,17] Independent from the initial 

partial curing degree a similar reduction of density is observed after final curing.  

The step-like discontinuity observed for the partially cross-linked samples still is weakly 

observable for the partially/finally cured samples. This is in contrast to our correspondent 

modulus measurements after final cure, which show no discontinuity.[17]  

For the partially/finally cured samples (64/100) and (69/100) a quite good agreement of the 

densities with that of the completely cured sample after single cure can be stated. This can be 

important for application of partially cross-linked epoxy resins, as the partial/final curing 

treatment guarantees densities similar to that of a conventional single curing step. Only small 

mismatch of material properties is expected for samples with different heating histories, e.g. 

for joining of partially/finally and fully cured resin regions.  

 

For the completely cross-linked sample also a decrease of density is observed after the final 

curing treatment. However, the density reduction is smaller than that of the partially/finally 

cured samples. Here, two opposing effects occur. On the one hand, the increasing cross-

linking of the polymer results in a reduction of density. On the other hand, an annealing 

treatment occurs, as the glass transition temperature of 209°C lies above the curing 

temperature of 180°C.[17] This heat treatment at Tc<Tg results in physical ageing induced 

structural relaxation processes, which create an increase of density. The contributions of these 

two opposing effects result in the observed, smaller density reduction. 

The decrease of density of the completely cured sample after final curing treatment is in 

contrast to our modulus measurements. The modulus of the finally cured (95/100) sample is 

clearly higher than that of the completely cured sample after single cure.[17] This missing 

direct correlation of density and modulus values can be caused by the different probing depths 

of the used methods. Density measurements average over the whole sample, and, therefore, 

result in bulk material properties. In contrast, the micromechanical testing by nanoindentation 
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is a strongly surface sensitive measurement. For the partially cured resin samples it has been 

shown, that no difference between micromechanical surface moduli and bulk sensitive 

macromechanical moduli exists. A very good agreement was found.[17] For the 

partially/finally cured resin samples no macromechanical testing was performed so far. 

Possibly an increased surface stiffness is created by the final heat treatment, which creates a 

deviation of surface modulus from the bulk density measurements. 

 

3.2. Hardness of partially and finally cross-linked epoxy resin 

 

Micromechanical hardness is closely connected to structural properties of glassy polymers. A 

direct correlation to the glass transition temperature and the packing density is described in 

literature. Also a relation to the modulus is reported.[15,16] For epoxy resins a qualitative 

agreement of micromechanical hardness and modulus is shown for photo-oxidation 

experiments.[22] Therefore, hardness measurements are a valuable tool for further 

investigation of structural changes of partially and completely cross-linked epoxy resin 

samples and should give complementary results to density and modulus measurements. In 

Figure 2 the hardness values of the partially and partially/finally cured resin samples are 

shown as function of curing degree. Also the transition region is marked. 
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Figure 2. Hardness of partially and partially/finally cured epoxy resin samples as function of initial curing 

degree. 
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In contrast to the density values shown in Figure 1 and the modulus values presented in 

Ref.[17], no significant changes of hardness of the partially cured samples are observed as 

function of curing degree. In particular, no discontinuity is found in the transition region. No 

direct correlation of hardness to the already investigated quantities, namely density and 

modulus, can be stated. The reason of the missing correlation is not clear so far. 

After final curing treatment, the partially/finally cured resin samples show a marginal increase 

of hardness. Here, also, a discrepancy to density and modulus results has to be stated, which 

both show a decrease after final curing. No significant variation of hardness of the 

partially/finally cured samples as function of initial curing degree is found. A good agreement 

of hardness of the (62/100) and (71/100) samples with that of the completely cured resin 

sample is found, which could be advantageous for applications of partially cured samples. 

 

For the completely cured sample a clear increase of hardness is observed after final curing. 

The hardness of the (95/100) sample with 0.321GPa±0.0040GPa is about 9% higher than the 

hardness of the completely cured sample after single cure. This result is in agreement with 

micromechanical modulus measurements, where also a significant increase of modulus of 

about 8% is observed for the (95/100) sample.[17] However, the density values do not show a 

correspondent increase. Probably surface hardening effects during final heat treatment 

influence the surface sensitive hardness measurements, as already described for the modulus 

investigation.  

 

 

4. Summary 

 

Partial cross-linking of epoxy resins marks a promising way for new curing and processing 

routes for CFRP production. A particular chemical reactivity of the polymer is retained, which 

in a subsequent processing step can be used, e.g. for joining of CFRP parts. A second final 

curing step guarantees the complete cross-linking of the resin. 

To develop specifically adapted curing cycles for different applications, knowledge of the 

relation between basic physical properties and the curing history is essential. With this 

objective the investigation of density and hardness of partially and finally cured RTM6 epoxy 

resin samples in the glassy state was performed. The density of the partially cured samples 

decreases with increasing curing degree and shows a discontinuity in the so called transition 

region, which is related to the transition from rubber to glassy state during cross-linking. 

Hardness values, in contrast, are not sensitive to this transition and show only minimal 

variations as function of curing degree.  

After the second, final curing cycle a significant reduction of density of all partially/finally 

cured samples is found, which is created by the further cross-linking of the resin and the more 

restricted packing of the polymer chains. The density values are even smaller than that of the 

completely cured sample after single curing. Hardness values, in contrast, show a slight 

increase for all partially/finally samples. For the (95/100) sample even a strong increase of 

hardness is found. Possibly surface hardening effects are relevant for the finally cured 

samples, which affect the surface sensitive nanoindentation measurement and prevent a direct 

correlation of hardness and density results. 

For some initial partial curing degrees a good agreement of density and hardness of the 

partially/finally cured samples and the completely cross-linked sample exists. This could be 

advantageous for different applications, e.g. the joining of partially cured and fresh resin 

parts, as the mismatch of material properties between the joined components is expected to be 

small.  
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The results demonstrate the impact of thermal history on basic physical properties of a tetra-

functional epoxy resins system and the potential applications of partially cross-linked epoxy 

resin systems. 
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