STUDY ON HIGHER DISPERSION OF TITANIUM DIOXIDE PARTICLES DURING POLYMERIZATION OF POLY (ETHYLENE TEREPHTHALATE) (PET)

S. KONAGAYA ^{a*}

^aDivision of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603 Japan , Ee-mail :konagaya@apchem.nagoya-u.ac.jp

Keywords: titanium dioxide, dispersion, zeta potential, poly (ethylene terephthalate)

Abstract

Zeta (ζ)-potential of TiO₂ particles in the BHET/ EG mixture as an alternative material of PET with various additives for PET polymerization such as metallic salts, phosphoric acid and alkyl phosphates was investigated by electrophoretic mobility method. The dispersion stability of TiO₂/BHET/EG suspension was influenced due to the decreasing ζ -potential in absolute value by the addition of metal acetates as well as phosphates. The addition of K₅P₃O₁₀ in the TiO₂/BHET/EG suspension restrained the change of ζ -potential from negative to positive, resulting in higher dispersion of TiO₂ particles in it. It was proved in the actual polymerization of PET that the addition of K₅P₃O₁₀ is so effective for the dispersion of TiO₂ particles in PET, even if in the presence of metallic salts, phosphoric acid and its alkyl phosphates.

1. Introduction

Poly (ethylene terephthalate) (PET) is an excellent commercial thermoplastic polymer, which is now used in lots of fields. Its physical and chemical properties are improved by the incorporation of inorganic particles such as titanium dioxide (TiO₂), silica (SiO₂) and calcium carbonate (CaCO₃). PET is also endowed with new functions by the addition of inorganic particles. TiO₂ has been added and dispersed as a light scattering agent and an ultraviolet light absorbent in PET.

Good dispersion of TiO₂ particles in a polymer is very important for the achievement of high performance as well as a highly efficient afterward-processing on its practical use. The incorporation of inorganic particles such as TiO₂ into PET is usually carried out by either melt-mixing or in-situ polymerization method. The uniform and productive dispersion of submicron inorganic particles with the size of less than 1 μ m into a polymer by melt mixing is very difficult because of high viscosity of the polymer. In the case of in-situ polymerization of PET, TiO₂ is pre-dispersed in ethylene glycol (EG) and the obtained suspension of EG/TiO₂ is obtained in EG by the various methods, the TiO₂ particles often aggregates due to the reaction temperature and the additives during the polymerization of PET.

In the previous paper, the effect of additives such as metal acetate salt, phosphate ester, Sb_2O_3 and amine on ζ -potential of TiO₂ particles in EG has been investigated with the electrophoresis method [1]. It was concluded that the addition of metal acetate salts and phosphate esters neutralizes the negative charges on TiO₂ particle surfaces, which results in the decrease of electrical repulsion forces between TiO₂ particles to be dispersed in EG and PET, while the addition of TEA in the TiO₂/EG suspension leads to the increase of ζ -potential in absolute value, resulting in the improvement of the TiO₂ dispersion. In addition, it was confirmed by model experiments and actual PET polymerization that TEA has a strong ability to disperse TiO₂ particles, even if in the presence of aggregation accelerators such as metal salts and phosphoric acid. However, EG was used as a model of PET in the previous paper, where the effect of the terephthalic acid unit (benzene ring) in PET was not considered.

In this work, by using bis(hydroxyethyl terephthalate) (BHET)/EG solution instead of EG as a model of PET, the effect of additives such as metal acetate salt, phosphate ester and salt on ζ -potential of TiO₂ particles has been investigated with the electrophoresis method. In addition, the influence of the polymerization conditions on the dispersion of TiO₂ particles in PET is discussed on the basis of the above results.

2. Experimental

2.1. Reagents and materials

TiO₂ (TA-300, anatase type) was supplied by Fuji Titanium Industry Co. Ltd. Terephthalic acid (TPA) and ethylene glycol (EG) of fiber grade were purchased. Bis (hydroxyethyl terephthalate) (BHET) was prepared by the transesterification of dimethyl terephthalate (DMT) with EG and purified by the recrystallization with water. All other reagents, phosphoric acid ((HO)₃PO) (PA), trimethyl phosphate ((CH₃O) ₃PO) (TMPA), triethyl phosphate ((C₂H₅O) ₃PO) (TEPA), potassium polyphosphate (K₅P₃O₁₀), cobalt acetate (Co(OAc)₂), calcium acetate (Ca(OAc)₂), antimony trioxide (Sb₂O₃)) were of analytic grade and used without any further purification.

2.2. Preparation of TiO₂/BHET/EG suspension with additives

BHET/EG (0.05 mol/L), phosphoric compound/EG (0.5 mol/L), metal compound/EG (0.05 mol/L) and TiO₂/EG (0.5wt %) suspension were prepared. BHET/EG solution was mixed well with the TiO₂/EG suspension with a stirrer, and a suitable amount of the additive/EG solution was put into the obtained mixture. The TiO₂/BHET/additive/EG mixtures were applied for the following electrophoresis measurement.

2.3. Preparation of PET

PET was prepared from TPA and EG with the incorporation of TiO₂/EG suspension and additives/EG solution according to the conventional polycondensation method (TPA/EG method). The target of intrinsic viscosity was 0.62 dl/g and the concentration of TiO₂ in PET was 0.5wt%. All the additives were added together with EG monomer. The number of TiO₂ particles with the size of larger than 5 μ m (aggregates) in a unit area of PET was measured by means of an optical microscope.

2.4. Measurements of ξ -potential of TiO₂ particles

The measurements of ξ -potential of TiO₂ particles in the TiO₂/BHET/additive/EG suspensions were carried out according to the previous paper [1, 2].

3. Results and discussion

3.1. Effect of BHET on ζ -potential of TiO₂ particles and their dispersibility

Fig.1 shows the effect of BHET on the ξ -potential and dispersion behavior of TiO₂ particles. TiO₂ particles dispersed in EG exhibited ζ -potential of -72mV. Absolute value of their ζ -potential decreased to a small absolute value with the increase of BHET. Our previous paper revealed that TiO₂/EG suspension with the absolute values of ζ -potential below 30 mv aggregated easily, possibly due to the lack of electric repulsion between TiO₂ particles. The reason why TiO₂/BHET/EG suspension showed good dispersion stability lies in the adsorption of BHET on TiO₂. Adsorbed BHET possibly prevents from the aggregation of TiO₂ particles. Then it is presumed that PET oligomer and polymer adsorb easily on TiO₂ particles.

Figure 1. Effect of BHET on ζ -potential of TiO₂ particles

3.2. Effect of metallic compounds on ζ -potential and dispersibility of TiO₂ particles in the presence of BHET

It was reported that TiO₂ particles dispersed in EG exhibited ζ -potential of -72mV, and the addition of metallic salts such as Co(OAc)₂ and Ca(OAc)₂ changed ξ -potential from minus value to plus value (decrease of absolute value of ξ -potential) to bring about TiO₂ aggregation. Aggregation of TiO₂ particles was observed in the TiO₂/EG suspension when its ζ -potential was ranging from -30 mv to +30 mv. On the other hand the addition of Sb₂O₃ exhibited good dispersion behavior of TiO₂ particles in spite of a large change of ξ -potential [1].

Fig.2 shows the effect of metallic compounds such as Co(OAc)₂, Ca(OAc)₂ and Sb₂O₃ on the ξ -potential and dispersion behavior of TiO₂ particles in the TiO₂/BHET/EG suspension. The sign "ppt" shown in Fig.1 stands for the aggregation of TiO₂ in the suspension. In spite of the presence of BHET the ξ -potential value changed from negative to positive value ranging from -20 mV to +20 mV with the increase of metallic compounds at the conventional concentration (10⁻⁵~10⁻⁴mol/mol EG). In addition, while TiO₂ particles aggregates were observed in the BHET/EG suspension with Co(OAc)₂ and Ca(OAc)₂, they were dispersed well in the BHET/EG suspension with Sb₂O₃. As for Co(OAc)₂ and Ca(OAc)₂, there was little change in the ζ -potential values and dispersion behavior between in the presence and in the absence of BHET which means they adsorb strongly on the surface of TiO₂ than BHET. As for Sb₂O₃, the ξ -potential value came close to 0 mV with the increase of Sb₂O₃ without evolution of TiO₂ aggregates. Such ξ -potential and dispersion behaviors are the same with those of TiO₂ in the TiO₂/BHET/EG suspension, which means that Sb₂O₃ adsorbs on TiO₂ weaker than BHET. In conclusion, the order of adsorbing ability is as follows.

(Strong adsorption) $Co(OAc)_2$, $Ca(OAc)_2 >>> BHET > Sb_2O_3$ (weak adsorption)

Figure 2. ξ -potential versus concentration of metallic compounds

3.3. Effect of phosphoric acid compounds on ζ -potential and dispersibility of TiO₂ particles in the presence of BHET

Fig.3 shows the effect of phosphoric acid compounds such as PA, TMPA, TEPA and $K_5P_3O_{10}$ on the ξ -potential and dispersion behavior of TiO₂ particles in the TiO₂/BHET/EG suspension. As for PA, TMPA and TEPA, the ξ -potential value changed from negative to positive value through 0 mV with their increase at the conventional concentration ($10^{-5} \sim 10^{-4}$ mol/mol EG), which ranged from -20 mV to +40 mV. There was no difference in the ξ -potential and dispersion behavior of TiO₂ particles between the TiO₂/BHET/EG suspension and TiO₂/EG suspension. The ξ -potential in TiO₂/EG suspension was not influenced by the addition of BHET, which revealed that PA, TMPA and TEPA adsorbed stronger than BHET to bring about the decrease of ξ -potential, resulting in the TiO₂ aggregation.

Figure 3. *ξ*-potential versus concentration of metallic compounds

3.4. Effect of $K_5P_3O_{10}$ on dispersion of TiO₂ in the TiO₂/BHET/EG suspension

Table 1 shows the ζ –potential values of TiO₂/EG and TiO₂/BHET/EG suspension added with K₅P₃O₁₀, where TiO₂ aggregation was not observed. The addition of K₅P₃O₁₀ in the TiO₂/BHET/EG suspension brought about a change of ζ –potential value to further negative value. Its ξ -potential in absolute value was increased by the addition of K₅P₃O₁₀ in spite of the presence of BHET, which means that K₅P₃O₁₀ adsorbs stronger on TiO₂ surface than BHET to stabilize more the TiO₂ suspension. The dispersion ability of K₅P₃O₁₀ to TiO₂ possibly resulted from the adsorption onto the surface of TiO₂ particles, which caused the increase of negative charge on it. K₅P₃O₁₀ yields possibly a thicker double layer to give more stable dispersion of TiO₂ particles in the suspension, which is due to a larger electrostatic repulsive force between two TiO₂ particles.

K ₅ P ₃ O ₁₀ (mol/mol EG)	ζ-potential (mV)		
	EG	BHET/EG	
0	-72	-17	
1.2E-5	-75	-41	
4.6E-5	-76	-56	
2.2E-3	-72	-60	

Table 1. Effect of K ₅ P ₃ O ₁₀	addition on ζ -potential	of TiO ₂ particles
--	--------------------------------	-------------------------------

TiO₂/EG : 0.5 wt %, BHET/EG : 4.7×10^{-4} mol/mol EG

3.5. Effect of $K_5P_3O_{10}$ on dispersion of TiO_2 in the actual polymerization of PET

Preparation of PET was carried out with different kinds of additives according to the usual procedure. The number of PC-5 μ in obtained PET was evaluated and the results were listed in Table 2. By the comparison of No.1 and No3 experiments, the addition of K₅P₃O₁₀ decreased the number of larger size particles (PC-5 μ in PET) from 6 to 4. PET obtained in the No.2 experiment showed a large PC-5 μ value (26), which was due to the aggregation of TiO₂ by the addition of Co(OAc)₂, Ca(OAc)₂ and TMPA. However, the number of PC-5 μ was decreased from 26 to 9 by the introduction of K₅P₃O₁₀ as shown in the No.4 experiment. In summary, it was made clear that K₅P₃O₁₀ has a strong ability to control effectively the dispersion of TiO₂ particles during the polymerization of PET.

Exp.	Additives $(TiO_2 / PET = 0.5 wt\%)$				PC-5µ
110.	Co(OAc) ₂ (mol%)	Ca(OAc) ₂ (mol%)	(CH ₃ O) ₃ PO (mol%)	K ₅ P ₃ O ₁₀ (mol%)	in PET
1	0	0	0	0	6
2	0.0012	0.0021	0.0044	0	26
3	0	0	0	0.00009	4
4	0.0012	0.0021	0.0038	0.00009	9

Catalyst: Sb₂O₃ (0.025 mol%), Temp.: 275 °C Press.: 0.1 mmHg, Time: 1.5 h

3. Conclusion

The effect of additives used during polymerization of PET on the ζ -potential and aggregation behavior of TiO₂ particles was studied according to electrophoretic mobility method by using TiO₂/BHET/EG suspension as a model of TiO₂ added PET polymer. Since there was no difference in the ζ -potential and dispersion/aggregation behavior of TiO₂ particles between TiO₂//EG and TiO₂/BHET/EG suspensions, the existence of BHET dissolved in TiO₂/EG slurry has no influence on dispersion/aggregation behavior of TiO₂ particles.

The addition of Co(OAc)₂, Ca(OAc)₂ PA, TMPA and TEPA neutralizes the negative charges on TiO₂ particle surfaces, which results in the decrease of electrical repulsion forces between TiO₂ particles to be dispersed in EG and PET. The addition of K₅P₃O₁₀ in the TiO₂ /BHET/EG suspension leads to the increase of ζ -potential in absolute value, and contributes to the TiO₂ dispersion.

It was confirmed by the model experiments and actual PET polymerization that $K_5P_3O_{10}$ has a strong ability to disperse TiO₂ particles, even if in the presence of aggregation accelerators such as metal salts and phosphoric acid.

References

- S. Konagaya, L. Hao, T. Yamada, T. Umemura and T. Hasegawa, Dispersion of Nano TiO₂ in Ethylene Glycol and Poly(ethylene terephthalate), *Composite Interfaces*, vol.17 (No.5-7), 559-570, 2010
- [2] N. Shinada and T. Tomiyama, *Shikizai* **39**, 846, 1966.