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Abstract 

A constitutive law for progressive matrix damage in unidirectional and fabric plies of long 

fibre reinforced composites is presented. The material model is based on the decomposition of 

properties into two idealized fibre and matrix phases. A novel algorithm for the 

decomposition is presented and tested considering several types of composite plies. A 

thermodynamically consistent damage model is applied to the matrix phase to model the 

evolution of progressive damage in different stress states by using a single damage variable. 

Application to carbon reinforced composites shows that the approach can correctly capture 

the non-linear response and the evolution of Poisson’s coefficients in angle-ply laminates 

made of unidirectional and fabric plies. 

 

 

1 Introduction  

The initiation and multiplication of different damage modes is a peculiar characteristic of 

inelastic processes in carbon-fibre reinforced composites. From the engineering point of view, 

attention can be focused on the consequences of damage onset and evolution on composite 

structural parts, and an important distinction can be introduced between damage processes 

that progressively evolve and degrade the laminate and other damage mechanisms, such as 

fibre failures, which represent a more immediate treat for the integrity of the composite part. 

Progressive damage accumulation is a characteristic of some intra-ply damage processes such 

as transverse matrix cracking and matrix-fibre interfacial debonding, which are known to 

represent the first damage mechanisms activated in laminates with multiple directions of fibre 

reinforcement in monotonic or cyclic loading conditions [1-5].  

Numerical modelling of damage accumulation in the matrix can be performed by applying 

continuum damage mechanics formulations to models developed at the scale of the 

homogenized ply. Though complex models, based on tensorial damage variables, have been 

proposed [6,7], composite inelastic mechanisms can be represented by means of several 

different scalar damage variables, because the different damage mechanisms tend to 

selectively affect the stiffness properties in different directions [7]. The approaches presented 

in [8, 9] model the progressive damage that evolves in matrix and in matrix/resin interface by 

means of two scalar damage variables that degrade the transverse elastic modulus and the 

shear modulus of unidirectional and fabric plies.  

The use of damage variables that separately degrades the elastic constants can be applied to 

distinguish between progressive damage accumulation in the matrix and brittle fibre failures, 



ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

2 

 

but an alternative approach is represented by a bi-phasic model, which allows introducing a 

neat separation between matrix-dominated and fibre-dominated inelastic responses. In a bi-

phasic approach the contribute to composite stiffness due to the presence of a continuous 

reinforcement is attributed to an idealized fibre phase, whereas a generalized matrix phase 

provides the remaining stiffness [10-12]. The principal objective of such bi-phasic 

decomposition is the possibility to model the response by using a limited number of damage 

variables and damage evolution laws. The approach has been typically adopted in impact 

analyses [11-14] but it presents some appealing aspects for a general purpose ply model. 

Indeed the attribution of matrix-dominated responses to a separate material phase can be 

exploited to couple the effects of different stress components that originate matrix damage 

accumulation. Moreover, the bi-phasic standpoint could be very useful for modelling 

composite visco-elastic behaviour and introducing the effects of environmental conditions. In 

fact, the effects of loading rate, temperature and humidity absorption are known to differently 

affect matrix- and fibre-dominated responses. Despite these possible advantages, a weak point 

of the bi-phasic approach is represented by the need of a preliminary decomposition of the 

composite properties into the two idealized material phases. 

The paper presents a bi-phasic model that can be adopted for unidirectional and fabric 

composite plies. A novel decomposition algorithm is presented and applied to a set of 

materials. A thermodynamically consistent damage model is developed for the matrix phase. 

A single damage parameter is used and the interaction between the stress components is 

inherently taken into account. Finally, the model is applied to an unidirectional and to a fabric 

carbon/epoxy ply. Numerical-experimental correlations show that the non-linear tensile 

responses in angle-ply laminates can be correctly captured by the bi-phasic approach, 

including the evolution of Poisson’s coefficients during the tests. 

 

2 Bi-phasic models and decomposition procedures  

The approach presented in this paper moves from the bi-phasic model introduced in [10-12] 

for unidirectional plies. The stress acting in the composite plies, which is an average stress in 

the representative volume element, is presented as the sum of the contributions due to two 

phases of the material, namely a fibre and a matrix phase. Hence, the bi-phasic model 

practically involves the decomposition of the composite stiffness tensor, CC , into two parts, 
fC and mC : 

 

   

 


mfC

mf

CCC 


         (1) 

 

The bi-phasic model is developed considering that the contribution of the idealized fibre 

phase represents only the stress component in the reinforcement direction,
F

11 , which is due 

to the effective stiffness of the fibres [10-12]. This is a very simplified interpretation of the 

role played by the fibres. The contribution due to the idealised matrix phase can be merely 

defined as the difference between the overall stress tensor carried by the composite and the 

contribution attributed to the fibre phase. Accordingly, the components of fC and mC are 

expressed as: 
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where F

ic is the fibre volumetric content in the i-th direction, bareF

iE   is the bare fibre stiffness 

and  is the Kronecker symbol. Equation 2 defines a decomposition scheme that is based on 

a simple rule of mixture and relies on the knowledge of the bare fiber stiffness. This approach 

is suggested in [12] for an unidirectional ply model and could be considered adequate for the 

scopes of the bi-phasic model, which is not intended as a true micro-mechanical approach. 

Nevertheless, several problems may arise when the procedure is applied to real materials. In 

particular, it can be observed that a negative 
mC11  is obtained in most cases by applying the 

bareF

iE   values available in literature and that, in other cases, the limitations imposed to the 

Poisson’s coefficient for the physical admissibility of the materials are violated.  

A novel and more reliable method for the decomposition of composite stiffness may be 

derived from a different point of view. Indeed, the distinctive properties of the ply in the 

reinforcement direction derive from the continuity of fibers. Hence, the fiber phase could be 

defined as the contribution due to the continuity of reinforcement and such contribution could 

be expressed by means of a fibre modulus , contF

iE  : 

 

ij

contF

i

F

i

f

ij EcC             (3) 

 

Considering that the stiffness matrices introduced in Eq. 1 are degraded in a continuum 

damage mechanics approach, the idealised matrix phase represents the characteristic of the 

composite when the idealised fibre phase is completely degraded. In the proposed 

interpretation of the bi-phasic approach, the degradation of fC should not model the 

elimination of fibre material, but should rather be related to the interruption of fibre 

continuity. Hence, to find contF

iE  , attention can be focused on another remarkable effect of  

reinforcement continuity, namely the difference between the Poisson’s coefficients when the 

ply is subjected to a uniaxial load along and transversely to the reinforcement direction. 

Generally speaking, the deformation in the fiber direction due to a stress applied transversely 

to the reinforcement is very low in long fiber reinforced composites. In fact, the 
Cv21 term, for 

unidirectional plies, is much lower than 
Cv12 , that is typically in the range 0v  = 0.250.35 [15]. 

A new decomposition procedure can be devised considering that, if fiber continuity is 

removed, the remaining material could be roughly considered as a composite reinforced by 

discontinuous inclusions and the Poisson’s coefficient 
mv21 of such a material should be within 

the range that has been previously denoted by 0v . A similar reasoning can be carried out for 

fabric plies in both the reinforcement directions. In a generic ply model, the Poisson’s 

coefficients of the idealized matrix phase can be expressed as a function of the terms of the 

stiffness matrices: 
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      (4) 

 

By applying Eq. 4, the terms of the stiffness tensor attributed to the fibre phase, 
fC11  and 

fC22 , 

can be immediately evaluated once the Poisson’s coefficient of the material are set to a given 

value 0v . Then, the properties of the idealized matrix phase can be evaluated: 
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Equation 5 defines a new decomposition algorithm that is valid for unidirectional ( 02 Fc ) as 

well as for fabric plies ( 0;0 21  FF cc ). The engineering constants of the material equivalent 

to the idealized matrix phase, 
mmm GEE 122211 ,, , can be computed from the terms of mC matrix. 

Table 1 summarizes the application of the procedure to a set of unidirectional and fabric plies, 

whose properties are reported in [15]. The results obtained by assuming 0v =0.25 are reported. 

It can be observed that the values contF

iE  turn out to be lower, with a single exception, but 

quite close to the values corresponding to the bare fibre moduli. Moreover, the obtained 

idealised matrix material is always a physically admissible material with stiffness properties 

similar to a plastic with a discontinuous reinforcement phase. The application of the 

decomposition algorithm with 0v = 0.35 leads to similar considerations. 

 

Material 
Fc11 , 

Fc22  

 

CE11  
(GPa) 

CE22  
(GPa) 

Cv12
 

(-) 

contFE 
 

(Gpa) 
bareF

contF

E

E





 

mE11  
(GPa) 

mE22  
(GPa) 

T-500 12k967 0.6,0.0 151 9.0 0.30
 

235.0 0.896 10.00 8.33 

T-300 15k 976 0.6,0.0 135 9.2 0.2 207.1 0.910 10.89 8.56 

HITEX33-6k E7K8 0.6,0.0 125 8.6 0.31 192.6 0.846 9.92 8.00 

AS4-12K E7K8 0.6,0.0 133 8.5 0.32 205.0 0.875 10.05 7.85 

Ceilon-12k E7K8 0.6,0.0 137 8.3 0.29 214.1 0.913 9.42 8.24 

AS4-12K 938 0.6,0.0 154 8.9 0.30 240.9 1.027 9.92 8.27 

Ceilon-12k 938 0.6,0.0 136 9.3 0.32 208.1 0.887 10.94 8.63 

AS4-12K 3502 0.6,0.0 133 9.3 0.30 207.9 0.886 10.40 8.66 

IM-6 12k APC-2 0.60,0.0 149 8.8 0.34 229.7 0.833 11.12 8.12 

Ceilon 3000 E7K8 0.28,0.28 67 66 0.06 179.1 0.759 14.29 14.29 

HITEX33-6k E7K8 0.28,0.28 60
 

60 0.05 171.1 0.752 10.31 10.31 

AS4 6k PR500 0.28,0.28 66 66 0.05
 

185.1 0.790 12.36 12.36 

Table 1. Application of the new decomposition algorithm. 

 

3 Thermodynamically consistent damage law for the idealised matrix phase 

In the suggested bi-phasic approach, the effect of fibre failure can be modelled by degrading 

the contribution due the reinforcement continuity, whereas other types of damages can be 

represented by properly formulating the constitutive response of the matrix phase. 

Following a classical approach in continuum damage mechanics, a thermodynamically 

consistent damage law can be formulated by considering the Gibbs potential of the matrix 

phase, which can be expressed by using the compliance matrix of the idealized phase:  
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In this work only the diagonal terms of compliance are damaged; such a choice leads to apply 

damage only to the engineering moduli 
mmm GEE 122211 ,, . In this general formulation, the 

expressions of the variables associated to damage process are: 
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In a thermodynamically consistent formulation, damage must be a function of these variables, 

which are known as thermodynamic forces. One of the main objective of the bi-phasic 

approach is the limitation of damage variables. Accordingly, a single scalar damage is used 

for the matrix and the evolution law of the damage variables included in Eq. 7 is identical: 

 

 ),, 332211332211 YYYddddd mmmmm 
       (8) 

 

Though a single damage variable is used, the orthotropy of the composite material is taken 

into account in the definition of damage evolution. In the proposed model damage evolves 

according to the values of a function shaped as a classic Tsai-Wu’s criterion in effective 

stresses space:  
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By exploiting Eq. 7, f is expressed as a function of the thermodynamic forces and the matrix 

damage evolves as a function of f: 
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It can be observed that the proposed approach inherently models the coupling between the 

different stress components acting in the idealized matrix phase. The evolution law is chosen 

in order to represent a progressive saturation of damage after an initial threshold, determined 

by the value f=1. Moreover, a critical damage state Du is defined at f=fu. Beyond such level 

the evolution law can be shaped to obtain a strain-softening response in the matrix phase:  
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By properly defining the Fij and Fi coefficients in the Tsai-Wu function, damage onset and 

evolution are modelled depending on the stress state acting in the matrix. Moreover, the 

proposed damage law takes into account that damage differently affects the stiffness in 

compressive stress states, due the natural effect of closure of micro-cracks [16]. Accordingly, 

a crack closure parameter h, with 0 < h <1, is introduced. When axial stress components 
m

11 or 
m

22 are compressive, the effective damage used in the constitutive response is 
mdh  . 

The bi-phasic constitutive law can be completed by a brittle damage law, which is attributed 

to the idealized fibre phase. The law has been implemented in the Abaqus/Explicit code and 

applied to a set of available results referred to three types of material. 

 

4 Application to progressive damage in three different types of composite 

The presented approach has been applied to laminates made of unidirectional and fabric plies 

reinforced by T800 fibres with an X01 Hexcel epoxy resin. A series of tensile tests have been 

performed on []S specimens with =0, 7.5°, 20°, 30°, 35°, 40° ,45° and 90° (the last one 

only for UD material). Three tests have been performed for each type of specimen. The 

parameters of the material model have been found by applying the decomposition algorithm 

formalized in Eq. 5, with 0v =0.25. Then the damage model has been calibrated by using the 

results of [30°]S and [45°]S tests. For the unidirectional material the linearity limit for 

[90°]S in compression has been assumed considering data referred to similar materials. Such 

limit has been used in the calibration process. The crack closure parameter h has been set to 

0.25 for both the types of plies. 

The material model has been assessed by considering single laminated shell elements and FE 

models of the specimens, as the one shown in Fig. 1-A, which is referred to the contour of 

matrix damage in the model of a [45°]S unidirectional specimen at failure. Figure 1-B and 1-

C report the numerical-experimental correlation for the unidirectional and fabric materials, 

respectively. Results show that the proposed model can acceptably capture the onset and the 

evolution of non-linearities induced by progressive accumulation of damage in the matrix, 

though the matrix stress states in the considered cases are considerably different.  It should be 

observed that in most of the experimental specimens failure has been influenced by edge 

effects. Consequently, the correlation with the stress levels at failure is not meaningful, 

though it is possible that a separate criterion should be introduced for the identification of 

critical damage levels and of the stress levels in failures due to matrix damage. 

The evolution of Poisson’s coefficients in the experimental tests and in the numerical models 

is correlated in Figure 2. In the numerical model, the progressive degradation of the stiffness 

in the idealised matrix phase involves a variation of the Poisson’s coefficient of the composite 

ply. The curves reported in Fig. 2 point out that the resulting trends of the Poisson’s 

coefficients are in appreciable agreement with the experimental results.  
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      Figure 1. FE model of a [45°]S unidirectional specimen (A), numerical-experimental correlation for 

unidirectional (B) and fabric (C) angle-ply tensile specimens []S. 
 

   

Figure 2. Numerical-experimental correlation for the evolution of Poisson’s coefficients in unidirectional (A) 

and fabric (B) angle-ply tensile specimens []S. 
 

5 Concluding remarks 

A bi-phasic approach has been developed and applied for modelling the accumulation of 

intra-ply damage in the matrix phase of multi-directional composite laminates. A novel 

algorithm for the decomposition of composite properties into two idealized phases has been 

devised. The decomposition procedure is based on the identification of the effects of 

reinforcement continuity and is applicable to both unidirectional and fabric plies. A 

thermodynamically consistent damage law has been developed for the progressive damage of 

the matrix. The law uses a single scalar damage parameter that evolves taking into account the 

mutual interaction of stress components and the different effects of damage in tension and 

compression. The application of the approach to a set of angle-ply laminates made of carbon 

reinforced unidirectional and fabric plies shows that the damage law can succesfully predict 

A 

B C 

A 

B 
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the onset and the evolution of the non-linearities that can be attributed to matrix damage 

accumulation. Moreover, the variation of the Poisson’s coefficients during the tests, which is 

influenced by the progressive damage of the matrix in the plies, is correctly predicted. The 

separation between the constitutive laws attributed to fibre- and matrix-dominate properties 

can be effectively exploited for the introduction of the effects of loading rate, temperature and 

other enviromental conditions in the composite ply model. 
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