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Abstract 

A new class of nanocomposites was synthesized using cellulose nanofibres that were 

covalently linked in-situ with an inorganic matrix. The goal of this research project was to 

find a new material that: (i) can be produced from sustainable resources (ii) can be 

consolidated with a low temperature cycle with a low energy input and (iii) retains better 

mechanical properties than pure cellulose throughout its thermal degradation. The inorganic 

matrix belongs to the aluminosilicate family and the cross-linking was obtained by a sol-gel 

process involving the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under 

mild acidic conditions. The cross-linking occurring between the matrix and the nanofibres 

was monitored using Fourier-Transform Infrared spectroscopy. X-ray diffraction was used to 

assess whether changes in the crystalline fractions occurred during the manufacture process. 

The thermal resistance of the composites was assessed by thermogravimetric analysis 

(TGA).The surfaces of these new materials were observed by atomic force microscopy.  
 

 

1 Introduction 

In nature, proteins and polysaccharides are often associated with silicon in the form of silicon 

dioxide. These nanometric particles are polymerised in-situ, creating strong covalent bonds 

between the two entities. Examples such as diatoms (phytoplankton), radiolarians 

(zooplankton) and sponges are often cited in the literature, but silica can also coexist with 

mineral materials in rice, grasses, orchids, etc [1] Biomineralisation processes in which 

organic and mineral entitites assemble into a composite are also commonplace in animals 

where they form structures such as teeth, bones, horns.[2] Hence, organic materials like 

collagen, elastin, keratin and various other proteins form composite structures with mineral 

compounds such as hydroxyapatatite, calcium carbonate, etc. Remarkable mechanical and 

physiological structures thereby form at low temperatures by nanometric assembly processes. 

The goal of this project is to use a similar logic to form better materials from the two quasi-

universal resources that are cellulose fibres and clays. In order to do so, an inorganic silicon 

alkoxide (TEOS) was self-assembled by condensation against the two starting materials in 

order to form covalent bonds between the two materials. 
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2 Materials and testing methods  

2.1 Materials 

Microfibrillated cellulose (MFC) was provided by the Laboratoire de Chimie Agro-

Industrielle (LCA) in the hydrated form (~40 wt. % dry mass); it was stored in a freezer until 

use. An unmodified montmorillonite clay (Sigma-Aldrich) was used as the starting inorganic 

material. Distilled water was used for all experiments. Tetraethyl orthosilicate (Sigma-

Aldrich), hydrochloric acid (Merck) and absolute ethanol (VWR) were used directly with no 

further purification or modification. 

 

2.2. Material preparation 

In a typical experiment, about 10 g of MFC (dry equivalent) were mixed in ~ 500 mL distilled 

water and stirred overnight at room temperature with a magnetic stirrer in a 1 L Schott bottle. 

The solution was poured in 250 mL Schott bottles. In order to produce homogeneous MFC 

films, bottles filled with 100 mL solution were first placed in an ultrasonic bath (ultrasonic 

cleaner Branson 200) at room temperature for 10 min. Hundred millilitres of distilled water 

were added to the solution before it was stirred with an ultra-turrax at ~12000 rpm (T18 

basic, IKA) for 5 min. The solution was then filtered over acrylic Versapor filters (0.45 µm 

pore diameter) in a Buchner funnel assisted with a table-top vacuum pump. The films were 

then dried in a vacuum bag against a glass plate at room temperature for 40 hrs.   

The clay/MFC mixtures were prepared with a slightly different procedure involving the 

addition of 1 g of clay to 100 mL of 1 wt.% MFC solution before the ultrasonic stirring step. 

The solution was stirred with a magnetic stirrer at room temperature overnight before the 

ultra-turrax step. The filtration and the film drying procedure were the same as those 

described in the previous paragraph. Clay contents of 50 wt.% were chosen in order to 

compare our results to the results obtained by Liu et al.[3] 

The tetraethyl orthosilicate (TEOS) solution was prepared in slightly acidic conditions by 

mixing the TEOS, the diluted acid and the ethanol together. The stirring was carried out 

overnight at room temperature in order to hydrolyse the TEOS solution.  

In order to prepare the consolidated MFC and clay/MFC films, films were immersed in Petri 

dishes in an excess of TEOS:H2Oac:C2H5OH solution at room temperature for 1 hr. They were 

then placed in a Petri dish filled with ethanol for 1 min in order to remove the excess TEOS 

solution. The films were stacked between perforated layers under a weight and dried for 48 

hrs under ambient conditions. 

A silicon matrix was obtained on its own by evaporating the hydrolyzed TEOS in a Teflon 

Petri dish. 

 

2.2 Testing methods 

TGA was performed on all materials on a Netzsch TG209. Samples between 5 and 14 mg 

were placed in Al2O3 crucibles. A heating rate of 10°C/min was carried out between room 

temperature and 700°C under a constant flow of N2
 
(12 mL/min). 

Attenuated transmitted reflectance Fourier transform infrared (ATR-FTIR) spectroscopy was 

performed on a Perkin Elmer Spectrum 65 apparatus equipped with a Miracle ATR accessory. 

The spectra were acquired in the 4000-450 cm
-1

 range with a 4 cm-1 resolution in 30 sec. All 

spectra were recorded with the Perkin Elmer spectrum V10 software. 

X-ray diffraction patterns were acquired on a X’pert pro PAN’alytical diffractometer 

(CRISMAT, Caen) equipped with a K Ni filter, 0.04 rad Soller slits on the tube side, anti-

scatter slits, a PIXcel-1D detector. The measures were performed in 2 angular range 

spanning from 5 to 90° in 8 min. The data was acquired on the Data Collector software and 
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the K1 radiation was selected. The plots were then exported in the .xrdml format and 

analysed with the Maud software (http://www.ing.unitn.it/~maud/).  

Atomic force microscopy (AFM) was obtained with a Brüker Innova microscope operated in 

tapping mode. The images were taken with a resolution of 1024X1024 pixels at a scan rate of 

0.5 Hz. The cantilevers (RTESPA-CP) possess high-sensitivity silicon probes with a spring 

constant of 40 N/m and resonance frequency of 300 kHz. The software Nanoscope Analysis 

v.1.4 was used for lateral microfibril size determination. The initial MFC solution was diluted 

25 X in order to obtain an 8 wt.‰ solution and the solution was stirred with ultrasound for 5 

min. Droplets of solution were cast on clean glass slides and left overnight for drying at room 

temperature. A final drying step involved placing the glass slides in an oven at 105°C for 1 hr. 

The surfaces of the films tested with the other techniques were also imaged. 

 

 

3 Results and discussion  

3.1 TGA 

The samples show large differences in their thermal behaviours. The remaining weight 

fraction of the MFC after test completion was 5.02 wt.%, that of the silicon matrix was 80.97 

wt.% and that of the TEOS-consolidated MFC was 17.57 wt.%. These results suggest a 

maximum SiO2 contribution of 16.52 wt.% in the consolidated cellulose (Figures 1 and 2). 

When compared to the pure MFC material, the TEOS-consolidated MFC had a much better 

thermal resistance. The MFC underwent a fast thermal degradation at a maximum peak 

temperature of 320°C (DTG data) and at a rate of -3.38 wt.%/°C; the extrapolated completion 

of this degradation temperature occurred at 333°C with a remaining 17.7 wt.% of the initial 

material (Figure 1). In contrast, the TEOS consolidated MFC underwent a slower thermal 

degradation at a maximum peak temperature of 312°C and at a rate of -1.94wt.%/°C; the 

extrapolated completion of this degradation occurred at 321°C and the corresponding 

remaining weight fraction was 46.9 wt.% (Figure 2). This weight fraction is well above what 

would result from a mere uncoupled mixture of cellulose and silica. The cellulose degradation 

was not only slowed down by the silicon cross-linking at the surface of the fibres, it was also 

much limited in intensity, supposedly because of the creation of a molecular complex at the 

cellulose surface by condensation of the orthosilicate group on the cellulosic material. The 

resulting material is much more thermally stable than the cellulosic material on its own.  

In a similar manner, the thermal properties of the silicified composite were enhanced when 

compared to the montmorillonite:MFC composite. From the residual weight fraction, the 

amount of condensed silica amounts to 10.25 wt.%. The degradation of the 

montmorillonite:MFC in the main cellulose degradation region around 310-315°C (as 

determined from the peak position of the DTG measures) was significantly slowed down by 

TEOS consolidation. The slope of this degradation was calculated to be -1.17 wt.%/°C 

without silicon consolidation and -0.51 wt.%/°C in the material consolidated by orthosilicate 

condensation (Figure 2). Such a slope change cannot be explained by the small amount of 

condensed silica in the composite. Once again, it is believed that this slope change is due to 

the creation of covalent bonding between the MFC and the orthosilicate groups. A weight loss 

in the 400-600°C region could indicate that the montmorillonite is in fact a synthetic mica-

montmorillonite clay.[4] 

 



ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

4 
 

 

 
Figure 1. Weight loss of the MFC (continuous line), montmorillonite (dashed line) and of the silicon matrix 

(dotted line) 

 

 
Figure 2. Weight loss of the silicified MFC (continuous line), MFC:montmorillonite composite (dashed line) 

and of the silicified MFC:montmorillonite composite (dotted line) 

 

3.2 ATR-FTIR 

The peak at 3620 cm
-1

 in the montmorillonite and montmorillonite composites is attributed 

unambiguously to hydrogen bonding (Figure 3). Cellulose has a strong hydrogen band made 

of several peaks in the 3600-3000 cm
-1

 region and centred around 3350 cm
-1

(Figure 3). The 

cellulose signal strongly overlaps the clay one in this region, which makes conclusive remarks 

as to peak clay displacements uneasy. The main peak is located at 3340 cm
-1

 in the untreated 

MFC, it is located at 3360 cm
-1

 in the MFC:montmorillonite material and at 3333 cm
-1

 both 

for the TEOS-consolidated MFC and MFC:montmorillonite. Besides the changes in peak 

position, a shoulder in the 3300-3290 cm-1 region clearly appears on the TEOS-treated 

materials. These changes in the hydrogen bonding region towards lower frequency after 

treatment reflect an increasing -H bond stiffness, which could be due to more constrained free 
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hydroxyl groups in the vicinity of orthosilicate groups condensed on other neighbouring 

hydrogen bonds. 

The peak at ~2900 cm
-1

 is usually assigned to C-H stretching. Whereas this peak appears as a 

fairly broad shoulder in the absence of silicon, it develops in a double peak with a sharper 

2900 cm
-1

 peak and a distinct shoulder at 2870-2875 cm
-1

.  

Eventually, a shoulder around 1052 cm
-1

 on the MFC spectrum develops into a distinct peak 

after TEOS treatment (Figure 3). This band is usually attributed to motions of silicon 

dioxide.[5-7] This band is also visible in the form of a shoulder on the consolidated 

MFC:montmorillonite composite, but its sharpness is strongly affected by both the C-O 

stretching of cellulose and the Si-O stretching of the clay.[8], [9]  

 

 
Figure 3. ATR-FTIR spectra  

 

3.3 WAXD 

The microfibrillated cellulose contained some calcite. This mineral is used in the refining and 

bleaching process of the recycled fibres during the MFC production. Montmorillonite peaks 

were visible in the MFC:montmorillonite composite before and after TEOS consolidation. 

Compared to the crystallinity of cellulose, the montmorillonite crystallinity was affected by 

the orthosilicate condensation, probably because of the orthosilicate reaction at the 

montmorillonite platelet surfaces inducing a loss of order. Qian et al. have indeed shown that 

mesoporous silicate could covalently attach to the montmorillonite surface when TEOS was 

used as a silicate precursor in sol-gel approach under acidic conditions.[10] The same team 

also demonstrated that the clay platelets could be exfoliated if the relative TEOS 

concentration in the starting solution was sufficiently high. This phenomenon was also 

evidenced in the present work by a sharp decrease of the (001) diffraction peak of the clay 

material at 2 ~ 9.3° (Figure 4).  
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Figure 4. WAXD of the various materials before and after silicification 

 

3.4 AFM 

The various materials were analysed with the help of an AFM in tapping mode. The study of 

the MFC material revealed highly defibrillated plant cell wall. The largest fibres had a 

diameter of the order of 1 µm and smaller fibres, usually around 100-200 nm in diameter, 

spanned from the former ones (Figure 5 a). The silica matrix on its own had a very flat 

surface (Figure 5 b). Whereas MFC films retained the fibrillar structure of the starting 

material after drying and compression, the MFC:montmorillonite composites exhibited a 

much smoother surface. This smooth aspect is probably due to the clay propensity to self-

aggregate in the direction parallel to the film surface and to occupy interfibrillar porosities.[3], 

[11] The surface appearance of the MFC films did not change after they were consolidated by 

TEOS treatment (Figures 5c and d). However, the surface of the silicified 

MFC:montmorillonite composite appeared slightly smoother than that of the non-silicified 

one (Figures 5 e and f). This could be attributed to a partial reorganization of the clay by 

exfoliation and by the adhesion of the orthosilicate groups at their surface, as observed 

somewhere else.[10] 
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Figure 5. Three-dimensional rendering of topographical images obtained by atomic force microscopy in tapping 

mode for (a) diluted MFC fibres deposited on a glass slide (b) SiO2 obtained by a sol-gel process and film 

surfaces of (c) MFC and (e) a 1:1 MFC:montmorillonite composite. (d) and (f) correspond, respectively, to (c) 

and (e) after impregnation in the hydrolysed TEOS solution and drying. 

 

 

4 Conclusions 

It is well known that mixtures of clay and submicrometric forms of cellulose have better 

thermal behaviour than cellulose on its own.[3] Yet, consolidation via physical cross-linking 

of silicon species at the surface of the materials can slow down the thermal degradation even 

more. WAXD, FTIR and AFM provided clues as to the physical attachment of MFC to the 

clay platelets via siloxane bridges obtained by silicon alkoxide condensation. Further research 

need to be carried out in order to elucidate the changes in mechanical behaviour, wettability 

and manufacturing possibilities of these materials.    
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