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Abstract 

Several studies on strength optimisation of anisotropic materials have been done using 

phenomenological failure criteria that describe the failure with a unique condition that 

algebraically is presented by a quadratic form, like for strain energy. This work represents an 

analytical approach to the optimization of orthotropic materials considering the Tsai-Hill, 

Hoffman and Tsai-Wu criteria. The first step concerns the formulation of these criteria 

through invariant formulation using the polar method, while the second step concerns the 

optimization of strength with respect to the orthotropic material orientation. Results obtained 

using the three different criteria are compared in order to evaluate the three formulations 

with respect to strength behaviour. 

 

 

1 Introduction 

 Many works have been devoted to maximise the stiffness of thin composite structures, see [1, 

2, 3, 4]. A more complicate problem concerns the maximisation of strength.  

Several studies on strength optimisation of anisotropic materials have been done using the 

phenomenological failure criteria of Tsai-Hill [5], Hoffman [6] and Tsai-Wu [7]. This is due 

to the formulation of these criteria based upon a unique condition that algebraically can be 

interpreted to as a quadratic form, like for strain energy. Normally, studies on stiffness 

optimisation use an energetic formulation to construct an objective function that usually is a 

global quantity. Strength optimisation, on the other side, presents a basic difference: any 

objective function, constructed using a failure criterion, describes a local quantity. Therefore, 

a large number of studies on strength optimisation of laminates present a local approach to the 

problem that in addition concerns a number n of objective functions, one for each ply. For 

example, Groenwold and Haftka [8] developed an analytical approach to the optimal strength 

design of laminates, where Tsai-Wu and Tsai-Hill failure indexes were used. Hence, a number 

n of objective functions, were considered in order to minimise the local value of the 

maximum failure index. Otherwise, Majak and Hannus [9] formulated the Tsai-Hill and Tsai-

Wu failure criteria in terms of strains for orthotropic materials. The failure index was assumed 
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as the objective function and an analytical method, for 2D orthotropic materials, was proposed 

to calculate its minimum.  

The present work presents an analytical approach to the optimisation of strength for 

orthotropic materials considering the Tsai-Hill, Hoffman and Tsai-Wu criteria. The first 

objective is the formulation of these criteria through invariant formulation using the polar 

method. In particular, the orientation of the material symmetry and the type of orthotropy are 

explicit terms of the polar parameters, unlike the classical Cartesian representation. The 

second objective is the optimization of strength (using the Tsai-Hill, Hoffman and Tsai-Wu 

criteria) with respect to the orthotropic material orientation using the polar method.  

 

2 Classical and invariant formulations 

Several failure criteria have been developed for composites materials. Almost all of them are 

formulated for a typical kind of anisotropic material: the orthotropic one. A brief presentation 

of the Tsai-Hill, Hoffman and Tsai-Wu criteria is reported, in order to understand the best 

way to formulate an objective function (that take into account the strength properties of the 

material). The reference system ℜ: {0; x1, x2, x3} will be considered coincident with the 

material frame, having x1 and x2 lying on the plane of the layer. 

1.1 General matrix formulation 

We can express the three criteria in the bi-dimensional space, by the general condition: 
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A peculiarity of the terms that compose the matrix [F] concerns the position of strength 

properties at the denominator in each fraction. So, we can assert that [F] describes, in some 

sense, the inverse of the strength of the material: the weakness. Hence, we can consider the 

matrix [F] as the analogous, for what concerns strength, of the compliance matrix [S]; then we 

will call [F] the weakness matrix. We will express [F] and, for consistency, the vector {f} in a 

frame rotated by an angle π/2 around x3 with respect to ℜ. In this way we will have the matrix 

[F] described in the new reference system ℜ′: {0; x,y,z = x3} with the x axis coincident with 

the direction of maximum weakness. 

The values of matrix and vectorial terms for each criterion are reported in Tables 1 and 2. 
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Table 1. Terms of [F] for the three criteria. 
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Table 2. Terms of {f} for the three criteria. 

 

The terms in the tables represent: 

 X, longitudinal strength along the fibres orientation; 

 Y, transverse strength perpendicular to the fibres orientation; 

 S, pure shear strength. 

Moreover, subscripts t and c stand for tension and compression respectively. 

2.2 Tensorial formulation 

In order to use the polar formalism, we will pass, in the rest of the work, to the tensorial 

representation of the weakness matrix [F] and of the weakness vector {f} for an orthotropic 

material with respect to the reference system ℜ′: {x, y, z}. The correspondence between the 

Voigt’s and the tensor components are: 
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2.3 About polar representation in ordinary orthotropy 

The polar method was introduced by Verchery [10] in 1979. His original work was focused 

on the representation of a fourth order tensor, like the elasticity tensor, through polar 

invariants. There are several advantages in using the polar method. First of all the possibility 

to use invariants with a physical meaning (they have a direct link with the elastic symmetries) 

and secondly the possibility to change reference system in an easier way than with the 

Cartesian representation, see [11]. 

As tacitly assumed in classical criteria, like Tsai-Hill, Hoffman and Tsai-Wu, we also 

consider that the components of [F] and {f} correspond respectively to the components of a 

fourth rank tensor F and of a second order tensor f, the first one possessing all the tensorial 

symmetries of a classical elasticity tensor and the second one being symmetric. 

The Cartesian components of the orthotropic tensor F in the plane (x, y) can be expressed by 

the polar ones, see [10], 11010  , ,)1( , ,  l : 
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The polar parameters 1010  , , ,   are invariants. In particular 10  ,   represent the isotropic 

part of the tensor F, while 10  ,  represent the amplitude of the anisotropic part, so 10  , are 

modules and can’t be negatives, see [10]. The polar angle 1  represents the orthotropy 

orientation and l determines the shape of orthotropy. There are two types of orthotropy that 

depends on the value of l: 0 or any other even value or 1 and any other odd value. 

Let us also consider the second order tensor f . The Cartesian components can be expressed 

using the polar ones,   , , : 
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The polar parameters   and   are invariants, while the polar angle   gives the orientation, 

with respect to the reference system, of the principal components of f and is hence, frame 

dependent. In addition, similarly to what happens for the fourth order tensor,   represents the 

spherical part of f while   the deviatoric one. 

In the following paragraphs we will introduce also the polar parameters of the stress tensor 

 , that will be denoted by T, R,  , obviously linked to the Cartesian components of   in 

the way described by eq. (5). 

 

3 Optimal material orientation to maximize the strength 

In this section we consider the bi-dimensional anisotropy optimisation in order to maximise 

the strength with respect to the orthotropy direction 1 . The objective function is the failure 

criterion of Tsai-Hill or Hoffman/Tsai-Wu for a given stress field. The aim is to find the 

orthotropic orientation that minimises the objective function written by the aid of the polar 

formalism. As mentioned, the choice of this formalism is due to the possibility of describing 

the material symmetries in a very direct way, thanks to the polar invariants, but also to the 

advantage in having the material orientation 1  as an explicit term in the expression of the 

objective function. 

3.1 Optimisation of Tsai-Hill failure index 

The Tsai-Hill criterion in the case of ordinary orthotropy is written using the polar parameters 

of tensor F and of tensor : 
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where the relation between the polar parameters T, R and the principal stress components 

III   ,  is: 



ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

5 

 

 

2

2

III

III

R

T











       (7) 

 

The polar angle   represents the direction of the higher principal stress component. The 

optimization problem can be defined as follow: 
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Problem (8) is completely analogous to the minimisation problem of the compliance Wc, see 

[3], the only design variable being the angle 1 . The next step concerns the analytical search 

of the stationary points of HillF  through the direction of the maximum weakness direction, 

represented by 1 . So, we have to write: 
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Eq. (9) is satisfied for one of the following conditions: 
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The first two cases are trivial and exclude any possible optimisation of the strength by varying 

the orthotropy direction, but the last two give three different local minima to be compared: 
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For sake of brevity in Fig. 1, we show a summary of the solutions, for more details see [12]. 

In the figure,  and  represent 
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Figure 1. Optimal orthotropy orientation of the weakness tensor for the case of the Tsai-Hill criterion. 

 

The use of the angle is useful in strength problems, as it indicates the direction of least 

stress for the material. This figure shows that while for 10 // RT the optimal solution opt
1  

is equal for the two types of orthotropy (l = 0 and l = 1), 10 // RT  the solution opt
1 for l = 

0 becomes anti-optimal for l = 1. Therefore, the type of orthotropy plays a decisive role in the 

optimization of strength.  

The polar formulation of the Tsai-Hill failure criterion, very close to that of the compliance, 

leads the strength optimisation to the same type of solutions obtained for the stiffness 

optimisation. Particularly, for l = 0 one optimal orientation of 1 depends upon , while the 

other one depends also upon the stress tensor (T, R) and the anisotropic part of the weakness 

tensor F ( 10  , ). In this sense, the solution is qualitatively equal to that of maximal stiffness 

but the actual values of the orthotropy direction minimising compliance and strength may be 

different, in general. On the other side, for l=1 the solutions give an orientation of 1  aligned 

with the principal stress component that has the minimum absolute value. Hence, in this case 

the optimal orientation of an orthotropic material to maximise the strength is equal to the one 

maximising the stiffness. 

A remark to end this section: the above results show clearly, the link between the anisotropy 

strength properties of the material and the stress field for obtaining the optimal orientation of 

the material. A similar result is found when the Hoffmann and Tsai-Wu criteria are 

considered, see for instance [12]. 

 

4 Conclusions 

The present work concerns an invariant analytical approach to the optimisation of strength in 

orthotropic materials. 

The polar formulation of the three criteria has been considered as the objective function, while 

the ordinary weakness orthotropy direction has been considered as the optimization variable. 

We have shown the possibility of having two different groups of solutions, depending upon 

the type of orthotropy. For the two groups, we derive analytically the different solution with 

respect to the polar components of the failure criteria. Results show that the type of orthotropy 

plays a decisive role in the optimization of strength and that, depending on the values of the 

stresses and of the polar parameters of the failure criteria, the optimal orientation of the 

material that maximises strength can be equal or different to the one that maximise stiffness 

and can also be the same or different for the three considered criteria. This means that it is 

possible to obtain in some cases an orthotropic plate that is simultaneously optimised with 

respect to two important engineering requirements, stiffness and strength. 
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