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Abstract 
The potential of embedded fibre optic sensors to monitor strains and delamination cracks, 
especially in thick fibre-reinforced composites has been investigated by moulding beams up to 
115 mm in thickness and 3 m in length.  In selected beams, optical fibre sensors with high 
tensile strength have been moulded within 10 mm of the tensile surface.  Within the whole 
experimental programme, the beams have been loaded in 3 point bending to loads up to 160 
kN and strains of 1.5%.  The immediate observation is that the moulding, curing or post 
curing does not affect the condition of the optical fibres nor do the fibres affect the strength of 
the beams.  On loading these beams there is a good correlation between the output of the 
mechanical gauges bonded to the tensile face and the embedded fibre optic sensors, taking 
into account the difference in strains between the two locations.  These observations will 
enable the monitoring in service use of thick GRP beams for which no other non-destructive 
test method is suitable. 
 
 
1 Introduction 
For fibre composites to be used with confidence in primary load bearing structures, methods 
of monitoring strains in service use are essential.  However for glass reinforced plastic (GRP) 
beams with thicknesses greater than say 40 mm, no suitable non destructive test technique is 
available which limits the range of applications for these materials.  So the partners in the 
Eurobogie project (E!1841) have investigated the potential of fibre optic (FO) strain sensors 
with high tensile strength, i.e. Draw Tower fibre Bragg Gratings (DTG®s), to monitor strains 
for components moulded by different methods.  Part of this investigation has been to develop 
a methodology of inserting the sensors and moulding the beams so that neither the fibre’s 
properties are affected by the moulding process nor the beam’s mechanical properties by the 
insertion of multiple optical fibres and DTG®s.  The other part was to correlate prediction 
and measurement making use of mechanical strain gauges.  The fibre sensors were 
manufactured by FOS&S (now FBGS) and are ‘draw tower’ type gratings, which are fibre 
Bragg gratings (FBG’s) with high tensile strength (~5GPa). 
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2 Design & testing of hand lay up beams 
A series of test plates was manufactured using a leaky mould and laying up each glass fabric 
layer by hand.  Finally two beams were moulded 1000 mm  long, 100 mm wide and 80mm 
thick using 67 layers of a unidirectional glass fabric (OCV Unimat 1136/100) and a high 
temperature polyester resin (Scott Bader Crystic 199) with Trigonox 44B (Akzo) as catalyst.  
Three optical fibres were embedded and tensioned using a thermoplastic polyester powder on 
the 8th layer above the tensile face.  The beams were tested in 3-point bending (Figure 1), one 
beam without a flaw and the second with a piece of polythene sheet 60mm long in the mid 
centre of the neutral axis to simulate a delamination crack.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Three point bend test of thick beam 
 
A Finite Elements Analysis of the intact and delaminated beams was carried out using Strand 
7 FEA Software and the results are summarised below.  This was done in order to determine 
the "best position" for the optical fibre sensors and the changes in bending strains in the 
longitudinal direction "seen" by the optical fibre sensors as a function of delamination length. 
All simulations have been carried out for a vertical load of 200 kN.  Because of the loading, 
the FEA calculations have been done using plane stress, 2D 8-noded quadrilateral elements 
with anisotropic properties.  The beam thickness is subdivided into 34 elements (each 2.7 mm 
thick, corresponding roughly to two layers of unidirectional glass tape) and its length into 40 
elements 12.5 mm long. 
 
 
FEA of loaded intact beam – At 200 kN the predicted central deflection of the beam is 20.97 
mm, which is close to the theoretical displacement of 18.8 mm.  The difference may be due to 
additional deformation under the loading points which is not considered in the theory. At this 
load the maximum bending strain (tensile or compressive) is of the order of 1.25% -1.5%.  In 
reality, the bogie maximum allowable strain is limited to 1%. The maximum interlaminar 
shear stress obtained from the FEA model is about 19 MPa. 
 
 
FEA of beam with delamination crack – Figure 2 shows the distribution of bending strains 
in the beam for delamination lengths at the centre of the beam at mid-thickness of 25, 75, 125 
and 175 mm.  There are two calculations for a delamination of 125 mm, one using contact 
elements to prevent the "closure" of the delamination [Delam 3 (125 mm) C in the legend of 
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Figure 2] and one without [Delam 3 (125 mm)_NC].  In all cases the delamination is 
modelled with a separation between the elements of 0.9 mm in the delaminated region.  It is 
clear from Figure 2 that when the delamination "appears" the bending strain across the 
thickness of the beam changes showing a jump at the delamination discontinuity.  The jump 
increases as a function of delamination length.  Modelling the delamination with or without 
contact elements between the delaminated surfaces seems to have a negligible effect. 
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Figure 2. Bending strain distributions across beam thickness in the delaminated beams. Beam mid-plane 

corresponds to element 17 
 
Assuming that the optical fibre is located 8 glass layers below the surface on the tensile side 
of the beam in bending (about 10 mm from the surface), the simulated change of strain 
measured by the optical fibre sensor in this location is shown in Figure 3.  This shows that at 
the position of the optical fibre there is a change of strain of about 800 microstrains going 
from the intact beam to the beam with a 25 mm delamination (under the same load).  As the 
delamination increases, the change with respect to the intact beam increases but only slowly.  
The biggest change is between intact and 25 mm delamination.  These results suggest that two 
optical fibre cables per beam should be sufficient to measure the response of the optical fibres 
in the intact and delaminated beams and a neutral axis delamination of 50 mm at the centre of 
the beam should provide enough difference in strain to be measurable.  
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Figure 3: Simulated bending strain changes at the position of optical fibre as a function of delamination length 
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3 Modelling the side arms of the bogie frame 
MARC/MSC software was used to carry out a similar analysis on the side arms of the lower 
GRP bogie frame (Figure 4) to determine the best location of the optical fibre sensors and to 
estimate the strain change introduced by a delamination at the centre of the beam.  Figures 5a 
and 5b show location of the maximum interlaminar shear strain without and with 
delamination near the wheel set.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Fibre glass bogie frame 
 
 

 
(a) (b) 

Figures 5a & 5b: Location of the maximum interlaminar shear strain of the bogie under vertical load without (a) 
and with (b) delamination. 

 
The maximum shear strain changes significantly with the introduction of the delamination 
which is about 100 mm long.  Figures 6a and 6b show the distribution of normal strains across 
the thickness of the bogie side-frame beam without and with delamination, respectively.  
 

4 



ECCM15 - 15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 
24-28 June 2012 

 

 
(b) (a) 

Figures 6a & 6b: Distribution of normal strain parallel to the fibre direction of the bogie without (a) and with 
(b)   delamination under vertical load. 

 
What is important is the change of normal strain due to delamination at the planned location 
of the optical fibres 10 mm from the tensile surface.  Figure 7 shows the change in normal 
strains before and after delamination near the top surface of the bogie frame beam.  The 
change in normal strain is of the order of 300-500 microstrains, sufficient for the optical fibres 
to be able to register. 
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Figure 7 Comparison of normal strains close to the top surface of the bogie with and without delamination 
 
4 Moulding and testing the side arm of the lower bogie frame 
The side arms of the lower GRP bogie frame (Figure 4) are 3.0 m long, 192 mm wide with a 
thickness tapering from 115 mm in the centre to 75 mm adjacent to the wheel sets.  Some 104 
layers of uni-directional glass fabric were successively laid up laid up inside a dedicated 4 
part mould.  As with the hand lay up beams, 4 optical fibres were tensioned on the 10th fabric 
layer from the tensile surface and then the remaining 94 glass layers added.  The out coming 
(egressing) FO cables were then wrapped in a protective polystyrene box, the mould closed 
and catalysed resin injected and cured.  The 84 kg beam was then demoulded and post cured 
up to 120 C.  After post curing, the FO sensors were checked to ensure that the moulding and 
subsequent curing had not induced change in the condition of the sensors.  Like with the hand 
laid up beams, no change was detected.  
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The side frame sub-assembly was completed by adding the side arms of the upper frame, the 
two axle boxes with their stub axles and the axle tie.  The sub assembly was then bolted 
together and placed inside a reaction frame which allowed the stub axles to rotate on a rail 
each side of the assembly (Figure 8) so enabling the span to vary from 2000 mm at no load to 
2040 mm at 200 kN.  The loads were applied to the top of the upper side arms via a servo-
hydraulic actuator.   
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Side assembly bogie side undergoing testing 
 
Foil mounted strain gauges (SG) mounted along the lower (tensile) surface of the beam were 
compared with FO sensors (DTG®s) at 230 mm and 750 mm from centre (Figure 9) – that is 
SG2 & SG5 with FO4b; SG 4 with FO4a; SG 7 with FO2b and FO3a.  
 

230
500

Figure 9. Side arm beam with position and number of strain gauges 
 
There is a linear response to load of both sets of sensors for varying loads up to 160 kN 
depending upon the location of the gauges/DTG®s along the length of the beam.  For similar 
located gauges/ DTG®s, the strains, as expected, are somewhat lower for the FO sensors 
located 10 mm inside the beam than at the surface where the foil SGs are located (Table 1).  
 

Load (kN) SG2 FO4b  (µstrain) 
40 
50  
60 

1050 1000 
1300 1250 
1600 1500 

Table 1. Strains measured by SG and FO gauges/gratings located 250 mm from beam centre 
 
The strains are always greater near the centre of the beam than at the ends which are 
supported by the axle boxes (compare Table 1 and Table 2).  The strains in the beam are 
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asymmetric because initially there were more visible delamination cracks along the left hand 
side of the beam than on the right hand side (Table 2). 
 

Load (kN) Left of centre Right of centre  
SG4 FO4a (µstrain) FO1b SG 7 (µstrain) 

40 800 600 430 ( -200) 
50 960 730 500  
60  1150 800 550 600 

Table 2. Strains at 700 mm either side of centre for SG and FO gauges/gratings 
 
However when the load was increased above 65 kN, the existing delamination cracks along 
the neutral axis lengthened and further delamination cracks grew beneath the neutral axis (see 
Figure 8).  This resulted in all FO strains increasing but particularly to the right of centre 
where the delamination crack on the neutral axis extended beyond the axle box.  
 
 
5 Discussion 
A method has been developed of tensioning and embedding FO sensors into glass reinforced 
plastics in a way that neither affects the performance of the sensors nor that of the component. 
The strain output of the FO sensors correlates very well with that of bonded foil strain gauges.  
However subsequent fatigue tests showed that the FO sensors are more rugged and better able 
to withstand cyclic fatigue because they are fully bonded around their circumference to the 
resin matrix whereas the mechanical strain gauges are only bonded on one face.   
 
 
Of equal significance is the ability to burn up to 10 DTG®s along a 3m length of fibre optic 
cable so enabling the strain distribution to be measured along the length of the beam.  This is 
of particular importance for delamination cracks which can arise anywhere along the length of 
the beam and do not necessarily grow symmetrically as illustrated above.   
 
 
The difference in strains between left and right hand side of the beam indicate the presence of 
a delamination cracks which were also observed visually because the critical crack length is in 
excess of 100 mm in these beams.  The strain differential in Table 3 is about 600 to 700 
µstrain which is of a similar magnitude to that predicted by the finite element analysis.   
 

Load (kN) Left of centre (FO4a) (µstrain) Right of centre (FO1b) (µstrain) 
 before  after  before  after 

 430 1460  600 820 40 
 500 1650  730 1100 50 
 550 1830  800  1200 60  
  2080   1300 100 
  2000   1380 130 
  1900   1400 160 

Table 3 Strains at 700 mm either side of centre for FO gratings at loads below 65 kN and after increasing the 
load to above 130 kN 

 
What we have yet to demonstrate is that the same set of FO sensors can be used to monitor 
the flow of resin along the length of the beam during the resin transfer moulding and then to 
record the distribution of the exothermic temperature rise during subsequent cross linking and 
curing of the polyester resin.  For very thick components, our results show that the exothermic 
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temperature rise has to be kept below 60 C.  Such an outcome would enable the quality of 
each moulding to be assured.   
 
This study is of critical importance to the successful development of our glass fibre bogie as 
by embedding such glass fibre sensors inside the side arms of the bogie frame, it will be 
possible to monitor strains in service and so detect delamination cracks below the critical 
crack length.  
 
 
6 Conclusions  
Our results demonstrate the potential of fibre optic sensors with high tensile strength to 
monitor both strains and the growth of delamination cracks in primary load bearing 
components manufactured from glass reinforced plastics. This will enable such materials to be 
introduced into the railway industry which has lagged behind all the other transport sectors in 
securing the benefits of reducing mass.   
 
 
This potential can only be realized by further demonstrations of the type that are being 
undertaken within the Eurobogie project and an industry and society willing to invest in 
introducing new suitable NDT technology.   
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