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Abstract  

In this paper, a known improved high-order theory and an accurate 3D finite element model 

are used for biaxial wrinkling analysis of composite sandwich plates with soft orthotropic 

core. The equations of motion and boundary conditions are derived by principle of minimum 

potential energy. Analytical solution for static analysis of simply supported sandwich plates 

under biaxial in-plane compressive loads is presented using Navier’s solution. Also, for either 

geometrical parameter, 3D finite element model of the problem has been constructed in the 

ANSYS 11.0 standard code.  Finally, effect of geometrical parameters and biaxial loading 

ratio are studied on the wrinkling loads using both models. Comparison of the present finite 

element results with analytical solutions in special case confirms the accuracy of the present 

finite element model. 

 

 

1 Introduction 

Sandwich plates are widely used in many engineering applications such as aerospace, because 

of their high strength and stiffness, low weight and durability. Sandwich plates experience 

some failure modes not occurred in metallic sheets or laminated plates. Face wrinkling is one 

of the important behaviors of these plates subjected to in-plane compressive loads. In this 

phenomenon, the faces buckle in shorter wavelength than those associated with overall 

buckling of the plate [1]. 

The wrinkling for sandwich struts with isotropic facings and solid cores were investigated by 

Hoff and Mautner [2], using a new model. In this model, the through thickness deformation 

decays linearly from the face sheet into the core. Plantema [3] proposed the exponential decay 

for the through thickness deformation in his book. Also, Vinson [4] summarized sandwich 

wrinkling statements in their textbooks. An extended unified theory for overall buckling and 

face wrinkling of sandwich panels with anisotropic facings was used by Hadi and Matthews 

[5]. Dawe and Yuan [6] provided a model which uses a quadratic and linear expansion of the 

in-plane and transverse displacements of the core and represented the face sheets as either 

FDST or CLPT. A B-spline finite stripe method (FSM) was used for buckling and wrinkling 

of rectangular sandwich plates subjected to in-plane compressive and shears loads applied to 

the face sheets. A high-order layer-wise model was proposed by Dafedar et al. [7] for 
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buckling analysis of multi-core sandwich plates. They assumed the cubic polynomial 

functions for all displacement components in any layer. As a large number of unknowns is 

involves, they proposed a simplified model and calculated critical loads based on the 

geometric stiffness matrix concept. 

Biaxial wrinkling of sandwich panels with composite face sheets was investigated by Birman 

and Bert [1] using three different models. Fagerberg and Zenkert [8] studied the imperfection-

induced wrinkling material failure in sandwich panels. Kardomateas [9] presented a 2D 

elasticity solution for the wrinkling analysis of sandwich beams or wide sandwich panels 

subjected to axially compressive loading.  

Shariyat [10] studied the nonlinear dynamic thermo-mechanical buckling and wrinkling of the 

imperfect sandwich plates using finite element method. He introduced a generalized global-

local plate theory (GLPT) that guarantees the continuity conditions of all displacements and 

transverse stress components and considered the transverse flexibility of sandwich plates. 

More recently, Kheirikhah et al. [11, 12] introduced a new high-order theory for buckling 

analysis of soft-core sandwich plates. They presented analytical solution for uniaxial 

wrinkling and biaxial overall buckling analysis of composite-faced sandwich plates using 

energy method.  

In the present paper, a new improved high-order theory is presented for biaxial wrinkling 

analysis of sandwich plates with orthotropic soft core. Third-order plate theory is used for the 

face sheets and quadratic and cubic functions are assumed for the transverse and in-plane 

displacements of the core. The nonlinear Von-Karman type relations are used to obtain 

strains. Continuity conditions of transverse shear stresses at the interfaces as well as the 

conditions of zero transverse shear stresses on the upper and lower surfaces of the plate are 

satisfied. Also, transverse flexibility and transverse normal strain and stress of the core are 

considered. The equations of motion and boundary conditions are derived via principle of 

minimum potential energy. Analytical solution for static analysis of simply supported 

sandwich plates under biaxial in-plane compressive loads is presented using Navier’s 

solution. Biaxial wrinkling loads are obtained for various sandwich plates. Effect of 

geometrical parameters of face sheets and core and biaxial loads ratio are studied on 

wrinkling behavior of sandwich plates.  

 

2 Mathematical formulations 

A rectangular sandwich plate with the plane dimensions of a×b and the total thickness of h is 

considered as shown in Figure 1. The sandwich is composed of three layers: the top and the 

bottom face sheets and the core layer. All layers are assumed with uniform thickness and the z 

coordinate of each layer is measured downward from its mid-plane.  

 

 
Figure 1. A typical sandwich plate and its dimensions 
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The face sheets are generally unequal in thickness, i.e., ht and hb are the thicknesses of the top 

and the bottom face sheets, respectively. The face sheets are assumed to be laminated 

composites. The core is also assumed as soft orthotropic material with thickness hc. 

In the present structural model for sandwich plates, the third-order shear deformable theory is 

adopted for the face sheets. Hence, the displacement components of the top and bottom face 

sheets (j = t, b) are represented as [11]: 
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where 
Kj

u  and 
Kj

v  (k = 0, 1, 2, 3) are the unknowns of the in-plane displacements of each face 

sheet and 
j

w
0

 are the unknowns of its vertical displacements, respectively. 

The core layer is much thicker and softer than the face sheets. Thus, the displacements fields 

for the core are assumed as a cubic pattern for the in-plane displacement components and as a 

quadratic one for the vertical component:  
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where 
KC

u  and 
KC

v  (k = 0, 1, 2, 3) are the unknowns of the in-plane displacement components 

of the core and 
lC

w  (l = 0, 1, 2)  are the unknowns of its vertical displacements, respectively. 

Therefore, the face sheets are assumed as in-plane flexible and transversely rigid plates. Also, 

the core is assumed as in-plane and transversely flexible layer. Finally, in this model there are 

twenty nine displacement unknowns: nine unknowns for each face sheet and eleven 

unknowns for the core. The nonlinear Von-Karman strain–displacement relations are used to 

obtain strains of the face sheets and core. 

In the present sandwich plate theory, the core is perfectly bonded to the face sheets. Hence, 

there are three interface displacement continuity requirements in each face sheet-core 

interface which were presented in Ref. [11]. Also, eight equations were obtained for satisfying 

the continuity conditions of transverse shear stresses at the interfaces as well as the conditions 

of zero transverse shear stresses on the upper and the lower surfaces of the sandwich plate.  

The governing equations of motion for the face sheets and the core are derived through the 

principle of minimum potential energy:  

 
0 VU   (3) 

 

where U is the total strain energy, V is the potential of the external loads and   denotes the 

variation operator. The first variation of the total strain energy can be expressed in terms of all 

stresses and strains of the face sheets and the core. In addition, six compatibility conditions at 

the interfaces, four conditions of zero transverse shear stresses on the upper and the lower 

surfaces of the plate and four continuity conditions of transverse shear stresses at the 

interfaces are fulfilled by using fourteen Lagrange multipliers. Thus, integrating by part and 

doing some mathematical operations, the equations of motion for the top and bottom face 

sheets (j = t, b) can be calculated as [11]: 
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and also for the core as [11]: 
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3 Analytical solution 

The exact analytical solutions of equations (4) and (5) exist for the simply supported 

rectangular sandwich plate with cross-ply face sheets. Both face sheets are considered as a 

cross-ply laminated composite. For simply supported plates, the tangential displacements on 

the boundary are admissible, but the transverse displacements are not as such [11]. The 

applied boundary conditions of simply supported plates are presented in Table 1. 

For sandwich plate which is subjected to biaxial compressive loading: 

 
0,, 00  btybxbytxtxyyyxx qqnnnnNKNNNN   (6) 
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In the above equation, K is compressive loads ratio. If K = 0, the uniaxial buckling occurred. 

For  K > 1 or K < 1, the compressive load along y direction is greater or smaller than that 

along x direction, respectively. 
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Table 1. Applied boundary conditions of simply supported plates 

 

In the buckling analysis, if a uniform state of strain is assumed, the relative edge stresses in 

the individual layers are proportional to the respective elastic modulus. The in-plane flexural 

rigidity of the soft cores is comparatively very small and hence the condition of uniform strain 

state is more realistic for sandwich plates [7]. Therefore, in this analysis the uniform strain 

state is assumed. Hence, the external in-plane loads exerted to the top and the bottom face 

sheets and the core along x direction can be defined as [11]: 
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where  t
xx

N̂  , b
xx

N̂  and  c
xx

N̂   are the parts of the total load which are exerted to the top face sheet, 

the bottom face sheet and the core along x direction, respectively. The partial loads along y 

direction can be calculated using above procedure. Using Navier’s procedure, the solution of 

the displacement variables satisfying the above boundary conditions can be obtained [11]. By 

substituting the Navier’s solution into equations (4) and (5) and collecting the coefficients, the 

final equations of motion in matrix form can be determined as: 

 
     

1431434343 0
 XA  (8) 

 

where [A] is coefficients matrix and {X} is Unknown Vector [11]. The nonzero result and 

buckling load is obtained when the determinant of [A] is set to be zero. 

 

4 Finite element modeling 

For either selected values of a/h and a/b, finite element model of the problem has been 

constructed by employing 20-nodes isoparametric hexahedral elements (solid 95) for 

discretizing the orthotropic core and 20-nodes layer elements (solid 191) for the laminated 

face sheets in the ANSYS 11.0 standard code. The constructed finite element model of a 

sandwich plate is shown in Fig. 2.  

 

 
Figure 2. The finite element model of sandwich plate 
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5 Numerical results and discussion 

In this section, several examples of the overall buckling and face wrinkling problems of the 

sandwich plates are studied to verify the accuracy and applicability of the present higher order 

theory. The results obtained by the present theory are compared with the results in the 

literature. The following dimensionless buckling load used in the present analysis is defined 

as [7]: 

 

3
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where E2 is the transverse elastic modulus of the face sheets. Two types of buckling modes 

are studied for sandwich plates: overall buckling and wrinkling modes. Generally, the overall 

buckling load corresponds to both wave numbers equal to unity (m = n = 1). If the buckling 

load of higher wave number is less than the overall buckling load, the sandwich plate would 

fail in the wrinkling mode, although, it is not a general case. For assessing of uniaxial 

wrinkling possibility, the wave number m should be increased in steps of one, when the wave 

number n is considered to be unity. But, biaxial wrinkling loads can be obtained by increasing 

both wave numbers in steps of one. 

A square symmetric sandwich plate with stack-up sequence of [(0/90)5/Core/(90/0)5] with the 

total thickness of h is considered. The sandwich plate consists of equal thickness cross-ply 

laminated face sheets with 10 layers and a soft orthotropic core. The analysis is performed for 

different thickness ratios (a/h = 20, 10, 20/3 and 5), different face sheet thickness ratios       

(ht /h = 0.025, 0.05, 0.075 and 0.1) and different biaxial load ratios (K = 0, 0.5, 1). The 

material constants used in this example are assumed as presented in Table 2.  

 
The composite layer of the face sheets The orthotropic core 
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1312312
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Table 2. The material constants [7, 10] 

 

The dimensionless wrinkling loads obtained by the present high-order analytical theory and 

finite element method are given and compared in Table 3. Also, if the wrinkling mode is 

possible, the mode numbers of wrinkling loads (m,n) which obtained by analytical solution is 

presented in parenthesis. The accuracy of present analytical high-order theory is examined by 

present authors for biaxial overall buckling and uniaxial wrinkling and its precision and 

efficiency was verified [11, 12]. Therefore, in the case of uniaxial wrinkling, the obtained 

results by the present finite element method are compared to the published analytical results 

[12] in the Table 3. This comparison confirms that the present finite element method is 

accurate. The results show that in constant geometrical parameters, the wrinkling loads 

decrease with increase in the load ratio (K), but their variations are very small. In constant 

thickness ratio (a/h), the wrinkling loads increase with increase in the face sheet thickness 

ratio (ht/h), because the stiffness of the face sheets is much greater than the stiffness of the 

core. It can be concluded that for thin sandwich plates (a/h = 20), the wrinkling behavior is 

not happened. Also, it can be seen that for all possible cases, the plates wrinkled in the mode 

number n = 1. Therefore it can be concluded that the wrinkling waves are only propagated 

along x direction. Also, the results indicated that in constant geometrical parameters, the 

obtained wave numbers are same for all the load ratios. In constant face sheet thickness ratio 

(ht/h), the wrinkling wave number m increases with increase in the thickness ratio (a/h). 



ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

7 

 

ht / h a / h 
Analytical Solution Finite Element Method 

K = 0 [12] K = 0.5 K = 1 K = 0 K = 0.5 K = 1 
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(27,1) 

0.3340 

(27,1) 

0.3339 

(27,1) 

0.328  

 

0.324 

 

0.313 

 

0.05 20 - - - - - - 

10 
2.9321 

 (42,1) 

2.9318 

(42,1) 
- 

2.982 

  

2.945 

 
- 

20/3 
1.3043  

(28,1) 

1.3039 

(28,1) 

1.3035 

(28,1) 

1.326  

 

1.301 

 

1.277 

 

5 
0.7346  

(21,1) 

0.7342 

(21,1) 

0.7337 

(21,1) 

0.723  

 

0.720 

 

0.711 

 

0.075 20 - - - - - - 

10 - - - - - - 

20/3 
2.1821  

(25,1) 

2.1812 

(25,1) 

2.1804 

(25,1) 

2.240  

 

2.213 

 

- 

 

5 
1.2288  

(19,1) 

1.2280 

(19,1) 

1.2271 

(19,1) 

1.219  

 

1.206 

 

1.198 

 

0.1 20 - - - - - - 

10 - - - - - - 

20/3 
3.1383  

(24,1) 
- - 

3.129  

 
- - 

5 
1.7667  

(18,1) 

1.7654 

(18,1) 
- 

1.751  

 

1.747 

 
- 

 * Wrinkling mode is not possible 

Table 3. Dimensionless biaxial wrinkling load for symmetric square sandwich plate [(0/90)5/Core/(90/0)5] 

 

 

 
Figure 3. Dimensionless biaxial overall buckling and wrinkling load for symmetric square sandwich plate 

[(0/90)5/Core/(90/0)5] 

 

Figure 3, shows the variation of dimensionless biaxial overall buckling and wrinkling load 

versus load ratio (K) for two different symmetric square sandwich plates. In first sandwich 

plate (a/h = 20/3, ht/h = 0.1), for K < 0.4, the overall buckling loads are greater than the 
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wrinkling loads and hence, the wrinkling is happened. But for K > 0.4, the overall buckling 

loads are smaller than the wrinkling loads and the wrinkling is not happened. In second one 

(a/h = 5, ht/h = 0.05), the overall buckling loads are greater than the wrinkling loads for all 

the load ratios and therefore, the wrinkling always happened.  

 

6 Conclusion  

In this paper, the known accurate high-order theory is used for biaxial faces wrinkling 

analysis of composite faced sandwich plates with soft core. Analytical solution for face 

wrinkling analysis of simply supported sandwich plates under various biaxial in-plane 

compressive loads is presented using Navier’s solution.  

It can be concluded that the obtained results by present finite element method are in good 

agreement with the analytical solutions. The results showed that in constant geometrical 

parameters, the dimensionless wrinkling loads decrease with increase in the load ratio (K). 

The results indicated that in all sandwich plates which the wrinkling behavior is possible, the 

wrinkling wave is only propagated along x direction for the load ratios K ≤ 1. Also, it can be 

concluded that for thin sandwich plates (a/h = 20), the wrinkling behavior is not happened.  
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