
ECCM15 - 15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

1 
 

 
 
 

ON THE PREDICTION OF GEOMETRIC NONLINEAR EFFECTS ON 
THE DAMPING OF COMPOSITE STRIPS AND BEAMS: THE CASE OF 

BUCKLING 
 
 

Dimitris I. Chortis1, Dimitris S. Varelis, Nikos A. Chrysochoidis, Dimitris A. Saravanos1* 
 

1Department of Mechanical Engineering & Aeronautics, University of Patras, University Campus, 
Rion, Patras, GR 26500, Greece 
*saravanos@mech.upatras.gr  

 
Keywords: Nonlinear damping, composites, buckling, finite element 

 
 
Abstract 
A theoretical framework is presented for analyzing the small-amplitude free-vibrational 
response of composite strips exhibiting significant geometric nonlinearities. Nonlinear Green-
Lagrange strains are introduced into the governing equations, assuming a Kelvin viscoelastic 
solid. A novel beam finite element is developed, which yields new nonlinear damping and 
stiffness matrices of the structure. The beam element is capable of predicting the damped 
free-vibration response and the modal characteristics of an in-plane deflected composite 
strip. Numerical results quantify the geometric nonlinear effect of compressive in-plane loads 
and the variation of modal damping and natural frequencies of composite strips during 
buckling and postbuckling response. Experimental measurements of a cross-ply Glass/Epoxy 
beam subject to buckling were conducted and correlated with the finite element predictions. 

 
 

1 Introduction 
The damping of polymer matrix composite materials and laminates has received substantial 
attention as it provides an additional functionality to composite structures enabling the passive 
control of aeroelastic loads. Thus far, the damping behavior of composite laminates and 
structures loaded within the range of linear response is well-understood and analyzed [1-6]. 
However, many applications which may benefit from the passive damping of composite 
materials involve large initial stresses and/or large rotations and displacements, forcing the 
structural response into the nonlinear regime. Typical examples are pressurized fuselage and 
wing structures, helicopter blades and large wind-turbine rotor blades exceeding 60m in 
length. Understanding and predicting the nonlinear damping and stiffness behavior of 
composite laminates in structures subject to large compressive loads and large displacements 
are important steps for improving the vibrational and aeroelastic response of many composite 
structures. 
 
 
The objectives of the proposed paper include the study and characterization of the nonlinear 
damping behavior of laminated strips undergoing buckling and post-buckling as well as the 
formulation of a theoretical framework for modeling the effect of large in-plane compressive 
loads and large rotations in composite strips. To that direction, a theoretical and 
computational framework for analyzing the small-amplitude free-vibrational response of 
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composite strips, which exhibit significant geometric nonlinearities, is formulated. A novel 
beam finite element capable of predicting the damping of composite strips 
compressive in-plane stresses is developed. 
models for predicting the damping capacity of each composite ply and eventually of the 
whole beam section. The kinematic equations include nonlinear 
governing equations and the First order Shear Deformation Theory (FSDT) is implied, 
assuming a Kelvin viscoelastic solid. 
used and the displacement control method is incorporated 
new damped beam finite element provides the effective and tangential (linearized) matrices of 
the cross-section and predicts the structural stiffness and modal damping of the composite 
structure subject to in-plane bucklin
prediction of modal damping values 
 
 
Numerical results quantify the contribution of first
stiffness laminate terms on the modal characteristics of composite strips 
compressive loads. Validations of predicted results with experimentally measured modal 
damping loss factors of a Glass/Epoxy cro
buckling are also conducted. 
 
2 Damping mechanics framework
The geometric nonlinear effects 
focus on the beam section level, with proper calculation of 
and damping terms, and then on
 

      Figure 1. Laminated composite beam

 
To that direction, a plate-beam or strip with arbitrary lamination is considered (Fig. 1a). The 
beam is assumed to be neither curved nor pre
 
2.1 Section kinematics 
The first-order shear section deformation theory (
extension and bending along 
The kinematic assumptions are the first step in order to build the nonlinear beam finite 
element formulation and have the 
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composite strips, which exhibit significant geometric nonlinearities, is formulated. A novel 
beam finite element capable of predicting the damping of composite strips 

plane stresses is developed. The damping mechanics include multi
models for predicting the damping capacity of each composite ply and eventually of the 

The kinematic equations include nonlinear Green-Lagr
governing equations and the First order Shear Deformation Theory (FSDT) is implied, 
assuming a Kelvin viscoelastic solid. The Newton-Raphson incremental-iterative technique is 
used and the displacement control method is incorporated into the finite element code
new damped beam finite element provides the effective and tangential (linearized) matrices of 

section and predicts the structural stiffness and modal damping of the composite 
plane buckling loads. The new contribution of the current work is the 

prediction of modal damping values of the beam in the pre- and the post-buckling region

Numerical results quantify the contribution of first- and second-order nonlinear damping and 
nate terms on the modal characteristics of composite strips 

compressive loads. Validations of predicted results with experimentally measured modal 
Glass/Epoxy cross-ply laminated composite strip undergoing

Damping mechanics framework 
geometric nonlinear effects are predicted through a multi-scale model

the beam section level, with proper calculation of the linear and nonlinear 
on the structural stiffness and damping matrices of

Laminated composite beam-strip element: (a) Cross-section; (b) Finite element and nodal degrees 
of freedom. 

beam or strip with arbitrary lamination is considered (Fig. 1a). The 
beam is assumed to be neither curved nor pre-twisted. 

order shear section deformation theory (FSDT) was considered, which admits 
 the x -axis and out of plane shear on ,x z  

The kinematic assumptions are the first step in order to build the nonlinear beam finite 
element formulation and have the following form, 
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composite strips, which exhibit significant geometric nonlinearities, is formulated. A novel 
beam finite element capable of predicting the damping of composite strips undergoing 

mechanics include multi-scale 
models for predicting the damping capacity of each composite ply and eventually of the 

Lagrange strains in the 
governing equations and the First order Shear Deformation Theory (FSDT) is implied, 

iterative technique is 
into the finite element code. The 

new damped beam finite element provides the effective and tangential (linearized) matrices of 
section and predicts the structural stiffness and modal damping of the composite 

g loads. The new contribution of the current work is the 
buckling regions. 

order nonlinear damping and 
nate terms on the modal characteristics of composite strips subject to in-plane 

compressive loads. Validations of predicted results with experimentally measured modal 
ply laminated composite strip undergoing 

scale model [7]. Here we first 
the linear and nonlinear stiffness 

iffness and damping matrices of the beam.  

 
inite element and nodal degrees 

beam or strip with arbitrary lamination is considered (Fig. 1a). The 

) was considered, which admits 
x z directions (Fig 1a). 

The kinematic assumptions are the first step in order to build the nonlinear beam finite 
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where: u , w  are the displacement components of the section and xβ  is the bending rotation 
angle around y -axis; superscript 0  indicates mid-section and the comma in the subscripts 
indicates differentiation. 
 
 
In order to capture the effect of initial in-plane loads, a nonlinear Green-Lagrange normal 
strain component was considered. The shear strain acting on the cross-section is assumed to 
remain linear. Thus, the engineering strains acting on the section have the following form: 
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Combining Eqs. (1) and (2), the detailed normal and shear strains of the section are expressed 
as follows:  
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The previous generalized strains, which equivalently describe the deformation of the section, 
include the linear axial strain 0xε , the transverse shear strain, 0

xzε  the bending curvature xk
 
and 

the nonlinear axial strain due to large deformations ( )L
x xε .  

 
2.2 Equation of motion 
The equations of motion of the beam could be described by the variational form: 
 

0 0

d δ d d δTd δ d 0
L L

A A

x H A x A
Γ

+ + Γ =∫ ∫ ∫ ∫ ∫ Tu τ� (4) 

 
where H  and T  are the strain and kinetic energy; τ  are surface tractions on the free surface 
Γ ; A  is the cross-sectional area covered by material and L  is the length of the beam. 
 
 
The strain energy variation of the section sec

δH  is represented by the integral over the cross-
sectional area as follows: 
 

sec
δ δ d

h

H b z= ∫ T
c cε σ (5) 
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where cε  and cσ  are the off-axis strains and stresses of a rotated composite ply, respectively; 

c  indicates off-axis ply and b  is the width of the composite beam section. 
 
 
A strain based Kelvin viscoelastic constitutive model was considered, next. Thus, the ply 
stresses are related to the strain in the form: 
 

      c cs c cd cσ = Q ε + Q ε& (6) 

 
where csQ  and cdQ  are the reduced off-axis stiffness and damping matrices of the composite 
ply, indicated by the subscripts s  and d , respectively. Substituting Eq. (6) into Eq. (5), the 
final expression for the strain energy variation over the cross-sectional area takes the form: 
 

[ ] [ ]( )( )sec
δ δ d δ δs ds

h

H b z H H= = +∫ T
c cs c cd cε Q ε + Q ε& (7) 

 
where δ sH  and δ dsH  are the expressions for the strain and dissipated energy variation of the 

cross-section, respectively. 
 
2.3 Section stiffness and damping terms 
Replacing the normal and shear strain expressions provided by Eq.(3), into Eq. (7), 
integrating firstly over the laminate thickness and assuming negligible transverse normal and 
shear laminate stresses , ,y xy yzN N N  and transverse and shear moments ,y xyM M  along 

the coordinate axes, Oxyz , the stored and the dissipated strain energy in the section takes the 

form: 
 

0 1 2

0 1 2

δ δ δ δ

δ δ δ δ

s s s s

ds ds ds ds

H H H H

H H H H

= + +

= + +
(8) 

 
where the subscripts ,s ds  indicate the cross-section strain and dissipated energy terms, 
whereas the subscripts 0, 1, 2   represent the terms containing linear, nonlinear first- and 
second-order components. 

 
3 Damped beam finite element 
A three-dimensional shear beam finite element was developed for the nonlinear quasi-static 
damped dynamic analysis of composite beams encompassing the aforementioned nonlinear 
mechanics (Fig. 1b). The element has 3 DOFs at each node (indicated with superscripti ), and 
approximates the generalized displacements by 0c  continuous shape functions( )iN x , 
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where, n  is the number of element nodes. 
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Combining the previous kinematic assumptions and collecting the common coefficients of the 
total stiffness   K , damping   C  and mass   M  matrices respectively of the beam, the 

equilibrium u(t)  is provided by the following equation: 
 

( ) ( ) ( ) ( ) ( )= + + -          Ψ u,t M u t C u t K u t F t&& & (10) 
 
3.1 Small-amplitude free-vibration of composite strip 
For vibrating beams subject to large deformations, we specialize their motion to the case of a 
perturbation vibration around a nonlinear static equilibrium point su , such that: 
 

( ) ( )su t = u + u t  (11) 
 
where overbar indicates perturbation quantities and ( )su u t� . In this case the equilibrium 

takes the following form: 
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Since su  is the point of static equilibrium, the imbalance force vector between the internal 
forces and externally applied mechanical loads, vanishes, 
 

( )  = − =s s sΨ K u F 0  (13) 

 

By definition the terms ( )( )      = ∂ ∂K K u u , ( )( )      = ∂ ∂C C u u& &  are the tangential or 

linearized stiffness and damping of the structure at the point of static equilibrium. Hence, Eq. 
(12) takes its final form which describes the small vibration of the beam: 
 

( ) ( ) ( )        = + + − =s s sΨ u,u ,t M u(t) C u u(t) K u u(t) F(t) 0&& &
 (14) 

 
3.2 Modal damping calculation 
Assuming harmonic motion Eq. (14) may be solved either directly to yield the complex 
eigenvalues of the system or by using an energy approach for the calculation of structural 
damping. In the present paper the second method is used, where the numerical solution of the 
undamped system provides the undamped modal frequencies and the relative mode shapes of 
the beam structure. The modal loss factor for the assumed Kelvin damping is calculated as the 
following ratio of the dissipated to the maximum stored modal energy in the structure: 
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where mω  and mU  are the undamped modal frequency and modal displacement vector, 

respectively. 
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4 Numerical results 
The developed beam finite element was evaluated through a series of experimental cases on a 
composite [02/902]s Glass/Epoxy cross-ply specimen [7]. The finite element code was 
formulated using the displacement control method and the Newton-Raphson iterative 
technique. Regarding the experimental procedure (Fig. 2), the beam was attached on a 
hydraulic uniaxial testing machine MEYES 100KN with both ends being clamped by 
hydraulic wedge grips; one remaining immovable while an in-plane displacement was applied 
to the other end at a rate of 0.01mm/min and during the load application vibration analysis 
tests were performed. 
 

 
Figure 2. Testing apparatus for the buckling experiments of Glass/Epoxy beam specimen. 

 
Fig.3 shows the transverse deflection versus the applied compressive displacement for two 
sets of measured data (I and II) and finite element predictions. The displacement was 
calculated as the reaction force at the node where the imposed compressive displacement was 
applied. An initial w0 range of 0.1-0.3mm was observed in the tested beam. In order to 
identify the sensitivity of the beam response to the initial imperfection, predicted results for 
w0=0.14mm, w0=0.28mm and w0=0.55mm are presented. 
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Figure 3. Predicted and measured transverse displacement at the midspan of the [02/902]s clamped-free 
Glass/Epoxy plate-strip subject to in-plane compressive displacement along its axis. 
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Fig. 4 shows the variation of the first bending modal frequency for increasing compressive 
load. It is obvious that as the buckling path transitions from the pre- to post-buckling region, 
the natural frequency decreases and then increases, respectively. The higher the initial 
imperfection at the midspan the less severe is the aforementioned transition in modal 
frequency, a conclusion reported also by Kosmatka [8]. The credibility of the developed beam 
finite element is validated by the excellent correlation of the predicted results with the 
experimental measurements, for the case of initial w0=0.28mm. 
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Figure 4. Predicted and measured first bending modal natural frequency of the [02/902]s clamped-free 
Glass/Epoxy plate-strip subject to in-plane compressive displacement along its axis. 

 
The new capabilities of the developed beam element are clearly illustrated in Fig. 5, where the 
first modal loss factor of the composite beam is shown. 
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Figure 5. Predicted and measured first bending modal loss factor of the [02/902]s clamped-free Glass/Epoxy 
plate-strip subject to in-plane compressive displacement along its axis. 

 
The variation of the modal damping is not monotonic. Within the pre-buckling region the 
modal damping gradually increases, reaches its maximum value near the critical load and 
thereafter it follows a decreasing path as the beam regains stiffness in the post-buckling 
regime. The predicted results are in excellent agreement with the experimental measurements 
for the case of initial w0=0.28mm. 
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5 Concluding remarks 
The theoretical and computational framework of a damped nonlinear beam finite element was 
presented to predict the dynamic response of composite beams under large in-plane buckling 
loads. The aforementioned nonlinear damping mechanics were incorporated into an updated 
research finite element code enabling computational prediction of the nonlinear damping and 
stiffness of composite laminated strips. New first- and second-order nonlinear damping and 
stiffness terms were formulated to predict the small-amplitude free-vibration response of 
composite strips in the pre- and post-buckling region. The new beam finite element captures 
the effect of stress-stiffening and large rotations on the natural frequencies and especially on 
modal loss factor values of composite strips subject to in-plane buckling loading.  
 
 
Both analytical and experimental results show that compressive loads may drastically change 
the damping of composite structures. The modal damping increases monotonically in the pre-
buckling range, reaches a maximum at the critical load and then decreases in the post-
buckling region. The credibility of the new finite element is further highlighted by the good 
correlations between predicted results and experimental measurements which also give 
credence to the Kelvin viscoelastic strain model, to provide good modal damping predictions 
in the buckled strip. 
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