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Abstract

A theoretical framework is presented for analyzing the small-amplitude free-vibrational
response of composite strips exhibiting significant geometric nonlinearities. Nonlinear Green-
Lagrange strains are introduced into the governing equations, assuming a Kelvin viscoelastic
solid. A novel beam finite element is developed, which yields new nonlinear damping and
stiffness matrices of the structure. The beam element is capable of predicting the damped
free-vibration response and the modal characteristics of an in-plane deflected composite
strip. Numerical results quantify the geometric nonlinear effect of compressive in-plane loads
and the variation of modal damping and natural frequencies of composite strips during
buckling and postbuckling response. Experimental measurements of a cross-ply Glass/Epoxy
beam subject to buckling were conducted and correlated with the finite e ement predictions.

1 Introduction

The damping of polymer matrix composite materiald &aminates has received substantial
attention as it provides an additional functionyald composite structures enabling the passive
control of aeroelastic loads. Thus far, the dampietpavior of composite laminates and
structures loaded within the range of linear respois well-understood and analyzed [1-6].
However, many applications which may benefit frone passive damping of composite
materials involve large initial stresses and/ogéarotations and displacements, forcing the
structural response into the nonlinear regime. dalpgéxamples are pressurized fuselage and
wing structures, helicopter blades and large wintihe rotor blades exceeding 60m in
length. Understanding and predicting the nonlindamping and stiffness behavior of
composite laminates in structures subject to laaapressive loads and large displacements
are important steps for improving the vibrationadl aeroelastic response of many composite
structures.

The objectives of the proposed paper include thdysand characterization of the nonlinear
damping behavior of laminated strips undergoingkbaog and post-buckling as well as the
formulation of a theoretical framework for modelitigg effect of large in-plane compressive
loads and large rotations in composite strips. That tdirection, a theoretical and
computational framework for analyzing the small-dtade free-vibrational response of
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composite strips, which exhibit significant geoneetmonlinearities, is formulated. A nov
beam finite element capable of predicting the dagpof composite stripcundergoing
compressive irplane stresses is developeThe dampingmechanics include mu-scale
models for predicting the damping capacity of eaomposite ply and eventually of t
whole beam sectioMhe kinematic equations include nonlinGreentagrange strains in the
governing equations and the First order Shear Defbon Theory (FSDT) is implie
assuming a Kelvin viscoelastic solThe Newton-Raphson incrementitdrative technique i
used and the displacement control method is incatpdinto the finite element co. The
new damped beam finite element provides the effecnd tangential (linearized) matrices
the crosssection and predicts the structural stiffness amdlahdamping of the compos|
structure subject to iptane bucklig loads. The new contribution of the current warkhe
prediction of modal damping valuof the beam in the pre- and the pbstkling regiois.

Numerical results quantify the contribution of - and secona+der nonlinear damping ai
stiffness lanmate terms on the modal characteristics of compatiipssubject to in-plane
compressive loads. Validations of predicted resulith experimentally measured mo
damping loss factors of &lass/Epoxy crssply laminated composite strip undergc

buckling are also conducted.

2 Damping mechanics framewor k

The geometric nonlinear effecare predicted through a mu#icale mod¢ [7]. Here we first
focus onthe beam section level, with proper calculatiorthe linear and nonlinestiffness
and damping terms, and thenthe structural gfness and damping matricesthe beam.

Figure 1. Laminated composite bei-strip element: (a) Cross-section; (bjike element and nodal degre
of freedom.

To that direction, a platbeam or strip with arbitrary lamination is consetki(Fig. 1a). Thi
beam is assumed to be neither curved nc-twisted.

2.1 Section kinematics

The firstorder shear section deformation theoFSDT) was considered, which adm
extension and bending alomige x-axis and out of plane shear oz directions (Fig 1a).
The kinematic assumptions are the first step ireotd build the nonlinear beam fini
element formulation and have tfollowing form,
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u(x,z,t)=u’(x,t)+ z8, (x,t)

1)
w(x,z,t) =w’(x,t)

where:u, w are the displacement components of the section/rnd the bending rotation
angle aroundy-axis; superscrip® indicates mid-section and the comma in the sufscri
indicates differentiation.

In order to capture the effect of initial in-plat@ads, a nonlinear Green-Lagrange normal
strain component was considered. The shear stcéiimgaon the cross-section is assumed to
remain linear. Thus, the engineering strains aaimghe section have the following form:

g, =uX+£w2X
' 2 )
(2)

& = u,z +\N,x

Combining Egs. (1) and (2), the detailed normal simeiar strains of the section are expressed
as follows:

£.(% z)=s£(x)+%m&z(x)+zkx(x)
3)
gxz(x1 Z) Z\N,?( +ﬂx

The previous generalized strains, which equivayetdscribe the deformation of the section,
include the linear axial straig, the transverse shear straitj, the bending curvaturk, and

the nonlinear axial strain due to large deformatiep( ).

2.2 Equation of motion
The equations of motion of the beam could be desdrby the variational form:

JL.dx [3HdA+ f o[ STdA+[fj3udr = 0 4)
0 A 0 A r

where H andT are the strain and kinetic energy;are surface tractions on the free surface
I'; A is the cross-sectional area covered by materallars the length of the beam.

The strain energy variation of the sectidid **° is represented by the integral over the cross-
sectional area as follows:

sec __ T
SH*°=b { 5el 6 0z 5)
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whereg, and e, are the off-axis strains and stresses of a rotdetposite ply, respectively;
c indicates off-axis ply and is the width of the composite beam section.

A strain based Kelvin viscoelastic constitutive rabdvas considered, next. Thus, the ply
stresses are related to the strain in the form:

Gc = [ch]sc + [ch]sc (6)

where Q. and Q_, are the reduced off-axis stiffness and dampingioest of the composite

ply, indicated by the subscripts and d, respectively. Substituting Eq. (6) into Eq. (B
final expression for the strain energy variatioeimothe cross-sectional area takes the form:

8|_|sec:bj(&gz([ch]gc+[ch],é,c))dz=8H5+8Hds %

where 6H_ and 6H,, are the expressions for the strain and dissipaedgy variation of the
cross-section, respectively.

2.3 Section stiffness and damping terms

Replacing the normal and shear strain expressionsided by EQq.(3), into Eq. (7),
integrating firstly over the laminate thickness as$uming negligible transverse normal and
shear laminate stressé§, N,, N, and transverse and shear momevits M, along
the coordinate axe<)

form:

w20 the stored and the dissipated strain energy in the sectiontkekes

8H, =8H, +8H, +8H_

(8)
SHy =8Hq, +8Hq +0H,,

where the subscripts, ds indicate the cross-section strain and dissipated energy terms,
whereas the subscripy 1, 2 represent the terms containing linear, nonlinear first- and
second-order components.

3 Damped beam finite element

A three-dimensional shear beam finite element was developed for theeaorduasi-static
damped dynamic analysis of composite beams encompassing temaftioned nonlinear
mechanics (Fig. 1b). The element has 3 DOFs at each node (indicttestiperscripit), and

approximates the generalized displacements’bgontinuous shape functioNs(x) ,

(W00, W9 AON=IN (I, W, 4) ©

where, n is the number of element nodes.
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Combining the previous kinematic assumptions artieéaong the common coefficients of the
total stiffness[K |, damping[C] and masg M| matrices respectively of the beam, the

equilibrium u(t) is provided by the following equation:

¥ (ut)=[M Ju(t)+[CJu(t)+[K Ju(t)-F(t) (10)
3.1 Small-amplitude free-vibration of composite strip

For vibrating beams subject to large deformations, we speciaémentiotion to the case of a
perturbation vibration around a nonlinear static equilibriunmipay, such that:

u(t)=ug+u(t) (11)

where overbar indicates perturbation quantities apd T(t). In this case the equilibrium
takes the following form:

oo 0([Clu) . o([Ku)_ _
¥(ut)=[M]d+ - u+([K]uS—FS)+Tu—F(t)—O (12)
Since u, is the point of static equilibrium, the imbalance force vector betweennternal

forces and externally applied mechanical loads, vanishes,

¥, =([K]Ju,-F,)=0 (13)

By definition the terms[KJz(a([K]u)/au), [E}:(a([c]u)/au) are the tangential or

linearized stiffness and damping of the structure at the poinaté siquilibrium. Hence, Eq.
(12) takes its final form which describes the small vibration of gzarb

¥ (T,ug,t) =[M Jtit) +[ C(us) Jact) +[ K (u;) [a@®)-Ft) =0 (14)

3.2 Modal damping calculation

Assuming harmonic motion Eg. (14) may be solved either dirdotlyield the complex
eigenvalues of the system or by using an energy approach for théataicwf structural

damping. In the present paper the second method is used, wheusntdecal solution of the
undamped system provides the undamped modal frequencies and the retade shapes of
the beam structure. The modal loss factor for the assumed Kelvinrgpimgalculated as the
following ratio of the dissipated to the maximum stored medakgy in the structure:

- _

Un|C(Uu)|Unm
= 2a O Un (15)
27 Um[ K (u) ]Um
where @, and U, are the undamped modal frequency and modal displacement vector,
respectively.
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4 Numerical results

The developed beam finite element was evaluatenigiir a series of experimental cases on a
composite [@90,]s Glass/Epoxy cross-ply specimen [7]. The finitened@t code was
formulated using the displacement control methodl d&ne Newton-Raphson iterative
technique. Regarding the experimental procedurg. (B), the beam was attached on a
hydraulic uniaxial testing machine MEYES 100KN witboth ends being clamped by
hydraulic wedge grips; one remaining immovable w/iaih in-plane displacement was applied
to the other end at a rate of 0.01lmm/min and dutiegload application vibration analysis
tests were performed.

Figure 2. Testing apparatus for the buckling experiments laS&Epoxy beam specimen.

Fig.3 shows the transverse deflection versus tipdies compressive displacement for two
sets of measured data (I and Il) and finite elemmmeidictions. The displacement was
calculated as the reaction force at the node winerémposed compressive displacement was
applied. An initial w range of 0.1-0.3mm was observed in the tested bé&arorder to
identify the sensitivity of the beam response te ithitial imperfection, predicted results for
Wo=0.14mm, w=0.28mm and ¥=0.55mm are presented.
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Figure 3. Predicted and measured transverse displacemedrd atitlspan of the B0, clamped-free
Glass/Epoxy plate-strip subject to in-plane comgixesdisplacement along its axis.
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Fig. 4 shows the variation of the first bending mloftequency for increasing compressive
load. It is obvious that as the buckling path trigmrss from the pre- to post-buckling region,
the natural frequency decreases and then increasggectively. The higher the initial

imperfection at the midspan the less severe is dloeementioned transition in modal

frequency, a conclusion reported also by Kosmakalhe credibility of the developed beam
finite element is validated by the excellent catein of the predicted results with the
experimental measurements, for the case of inigaD.28mm.
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Figure 4. Predicted and measured first bending modal nafrgquiency of the [#90,]s clamped-free
Glass/Epoxy plate-strip subject to in-plane comgixesdisplacement along its axis.

The new capabilities of the developed beam elementlearly illustrated in Fig. 5, where the
first modal loss factor of the composite beam mnah
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Figure5. Predicted and measured first bending modal logserfat the [3/90,]s clamped-free Glass/Epoxy
plate-strip subject to in-plane compressive diggaent along its axis.

The variation of the modal damping is not monotoMdthin the pre-buckling region the
modal damping gradually increases, reaches its manxi value near the critical load and
thereafter it follows a decreasing path as the beagains stiffness in the post-buckling
regime. The predicted results are in excellenteagent with the experimental measurements
for the case of initial y=0.28mm.
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5 Concluding remarks

The theoretical and computational framework of mpled nonlinear beam finite element was
presented to predict the dynamic response of comeplosams under large in-plane buckling

loads. The aforementioned nonlinear damping meckanere incorporated into an updated
research finite element code enabling computatiprediction of the nonlinear damping and

stiffness of composite laminated strips. New filtid second-order nonlinear damping and
stiffness terms were formulated to predict the &@alplitude free-vibration response of

composite strips in the pre- and post-bucklingaegiThe new beam finite element captures
the effect of stress-stiffening and large rotationsthe natural frequencies and especially on
modal loss factor values of composite strips sulifem-plane buckling loading.

Both analytical and experimental results show tmahpressive loads may drastically change
the damping of composite structures. The modal dagnpcreases monotonically in the pre-

buckling range, reaches a maximum at the criticaldland then decreases in the post-
buckling region. The credibility of the new finisdement is further highlighted by the good

correlations between predicted results and expatmhemeasurements which also give

credence to the Kelvin viscoelastic strain modelprovide good modal damping predictions

in the buckled strip.
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