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Abstract 
A new approach to model composites with woven fiber reinforcements at the meso-scale is 
presented. It takes into account the yarn deformation occurring during preforming in the 
manufacturing process. It is based upon a new method to generate finite element meshes of 
the representative unit cells of woven composites, ensuring full contact between yarns, mesh 
conformity at the interfaces, and smooth, continuous yarn surfaces. The influence of the 
reinforcement compaction on the in-plane stiffness is studied. The model shows good 
agreement with experiments, and reveals that it is crucial to vary the yarn properties locally 
according to the yarn cross section. The method is highly flexible and the generated meshes 
well suited for the use in non-linear analysis and damage modeling. 
 
 
1 Introduction 
Woven composites are more and more used in the aeronautical industry because they present 
a good density/performance ratio and a high flexibility of the reinforcement allowing for 
optimization of the structural performances. They are fabricated by interlacing in crossed 
direction (0°/90°) two sets of fiber tows (warp and weft) in the case of 2D woven 
architectures. A third set (binder tows) is inserted in the out-of-plane direction in 3D woven 
architectures. Then, the dry fabric is draped in a mold, the resin is injected and finally both are 
cured to consolidate the material. This manufacturing process allows for a high adaptability 
which reduces labor and production costs compared to traditional laminated composites [1]. 
Moreover, the reinforcement composed of interlaced yarns in multiple directions offer, 
compared to composite laminates, better out-of-plane stiffness, strength, and toughness [2,3]. 
Depending on the structural needs, the optimum weave pattern may be very different, and has 
to be chosen among a quasi-infinite number of possibilities [4-7]. The potential of this kind of 
materials is very attractive, but in order to design woven composite structures that are really 
competitive compared to metals, it is necessary not only to optimize the constituents and their 
interaction between each other, but also the entire manufacturing process, in which each step 
has a strong influence on the structural properties of the composite [8-11]. For this reason, a 
link is needed between materials/manufacturing process parameters and structural 
performances of a woven composite part. In this contribution, we focus on the link between 
the fabric preforming step of the manufacturing process and the mechanical properties of the 
composite. Numerous models for the mechanical performances of woven composites have 
been developed by different research groups. A review of various models is given, e.g., by 
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Onal and Adanur [12] for 2D reinforcements, or by Ansar et al. [13] for 3D reinforcements. 
Analytical approaches give good predictions of the elastic homogenized properties of a 
Representative Unit Cell (RUC) of woven composites at the macro-scale, and have the 
advantage of low computational costs. Nevertheless, the capability to predict local stress and 
strain concentrations is limited. Therefore, FE models are needed in order to study nonlinear 
aspects, such as damage mechanisms [14]. Because of the strong is the influence of the fiber 
architecture on the material properties [4,5,7,14], the FE models have to represent the weave 
pattern as accurate as possible. This last point presents some difficulties and limits the 
applicability of this numerical approach [14]. Indeed, while numerous geometrical models of 
idealized weave pattern exist [15-18], meshing complex geometries of arbitrary woven 
architectures in a robust and automatic process remains a real challenge, and is beyond the 
capability of state-of-the-art automeshing programs [19,20]. To overcome these difficulties, 
several solutions have been proposed: the most common is imposing a small minimum 
distance between yarns in contact areas [15,17,21], which allows the creation of the matrix 
volume by simple boolean operations between a box and the yarns, available in most 
automeshing programs. The main drawbacks are that the mesh size in these spaces has to be 
very fine in order to avoid elements of poor quality, and that the matrix volume in the mesh is 
greater than in the real composite. Voxel elements offer an attractive alternative, but 
computational cost are high because the elements need to be very small, and local stress-strain 
concentrations at the interfaces of crimped yarns are not accurately predicted [19,20,22]. To 
the authors’ knowledge, no general automatic and direct FE meshing method is currently 
available, which takes into account the reinforcement deformation after preforming and 
respects the continuity of the interface shapes. 
A new method to generate FE meshes of woven composite RUCs with variable tow cross-
section and full contact between yarns is proposed in Section 2. The objective is to link the 
deformation created by the preforming of the woven reinforcement to the mechanical 
properties of the composite. An unbalanced 4-ply plain weave E-Glass-epoxy laminate is 
modeled using a multi-scale approach (Section 3). The influence of preforming on in-plane 
homogenized elastic constants and on the local stress and strain distribution is analyzed in 
Section 4. 
 
2 Mesh construction of a woven composite RUC with variable tow cross-sections 
2.1 Parametric representation of yarn surfaces 
The first step is to develop a general, robust and automatic geometry post-processing 
procedure that transforms the yarn geometries into a simple output format allowing their 
reconstruction by any kind of unstructured meshing tool. The entire procedure described 
below has been coded in MATLAB. 
A yarn surface is generally represented by the yarn path and the cross-section. The yarn path 
is a one dimensional line following the yarn center in a three dimensional space. It can be 
described by a number of points, called master nodes, between which the line is interpolated. 
The cross-section is defined as the 2D shape of the yarn when cut by a plane perpendicular to 
the yarn path tangent. In general, it varies along the yarn path. We represent the yarn surfaces 

),( vuP  using the parametric representation described by Sherburn [16], where u is the 
coordinate following the yarn path, while v follows the cross-section boundary. When this 2D 
parametric space is sampled, the yarn surface can be described by three matrices X, Y, Z, such 
that the position of each point Pi j on the yarn surface is given by: 
 

),(),( jiXvuP ji = x + ),( jiY y + ),( jiZ z, with 0 ≤ i < imax, 0 ≤ j < jmax (1) 
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If we ensure that each point is connected to its neighbors through the indexing of X, Y and Z, 
each yarn becomes a 3D grid whose denseness is controlled by the number of sample points 
imax and jmax. Eq. (1) shows that the yarns grids can be decomposed into two types of lines (see 
Figure 1): jmax Yarn Lines max0)( jkkYL <≤  and imax Yarn Sections max0)( ikkYS <≤ . The Yarn Lines 

contain each imax points max0)( iikiP <≤ , describing the yarn surface evolution along the yarn path 

direction. The Yarn Sections contain each jmax points max0)( jkkjP <≤ , describing the yarn cross-

section evolution along the yarn path. One line set for each yarn is sufficient to reconstruct the 
entire surface grid by interpolation and sample operations. This representation is thus very 
flexible: it is easily possible to build a yarn surface grid from a deformed hexahedral mesh or 
from a series of cross-sections along the yarn path, obtained from geometrical models or 
micro-tomography [15-17]. 
 

 
Figure 1. Parametric yarn representation 

 
2.2 Conformity of yarns in contact areas 
The meshes of two yarns are considered as conform if three conditions are met in the contact 
areas: (C1) they are sampled by the same number of nodes, which are (C2) at the same 
position, and (C3) have the same connectivity between them. In the geometrical model, the 
contact area must thus be represented by a unique topological entity which is common to both 
yarns. To the authors’ knowledge, this is currently beyond the capability of state-of-the-art 
geometrical models when the yarn geometries are complex, especially when yarn deformation 
due to performing is taken into account. 
The grid representation of the yarn surfaces described above, allows to generate a contact 
zone description meeting all three conditions by means of the two step procedure illustrated in 
Figure 2. The input parameters are the yarn grids and only one distance tolerance parameter 
tol. 
Step 1 – Detection of contact areas (Figure 2a): The contact area between two yarns α1 and 
α2 is mapped by all points at the intersection of every line of YLα1 with every line of YLα2 if 
the yarn paths cross each other, or otherwise with every section of YSα2. Two lines are 
considered to intersect if their minimum distance is below tol, and the intersection point is 
located at the center between the closest points on the lines. 
Step 2 – Yarn grid reconstruction (Figure 2b and c): Once the contact points between every 
pair of lines have been detected, each line of YLα or each section of YSα of every yarn is 
separately rebuilt following two rules: (R1) a point cannot be inserted between two colored 
points of the same contact area, and (R2) every line or section belonging to the same yarn 
must contain the same number of points. Hence, (R1) ensures (C1) and (C2), while (R2) 
ensures a yarn representation through a parametric surface as described in Eq. (1). Figure 2b 
and c show the contact points, colored corresponding to the identification index α of the yarn 
in contact. After this procedure each yarn is still described by three matrices X, Y, Z, as in Eq. 
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(1). A fourth matrix I contains the identification indices of the contact areas: I(i,j)  is the index 
at the point Pij. It is equal to 0 if Pij is not a contact point. 
 

 
Figure 2. a) Contact detection between a yarn A and six other yarns [B-G] ; b) top view of yarn A with 

intersection points with yarns [B-G] ; c) top view of yarn A after grid reconstruction 
 
2.3 Generation of a periodic unstructured FE mesh 
Using the four matrices X, Y, Z and I for each yarn of the woven reinforcement, every node 
composing the yarn surface mapping can be constructed. Their respective position in the 
sampled 2D space given by the indices i and j (Eq. (1)), gives the connectivity to their 
neighbors, allowing the creation of all edges and faces needed to generate a mesh. As Pij, Pi+1j, 
Pi+1j+1 and Pij+1 are not coplanar, it is not possible to represent the surface by squares, but, 
triangle faces are allowed. Therefore, we have chosen to work with tetrahedral meshes. With 
the information given by the I matrix, the node connectivity is chosen such that the generated 
triangles have the best aspect ratio and respect the boundary of every contact area. Once each 
yarn mesh has been separately created, they can be fused as conformity at the contact areas 
has been ensured. Finally, the external faces of the composite RUC have to be built. Knowing 
position and connectivity of all reinforcement nodes, each boundary of each in-plane external 
face can be drawn, allowing for meshing the entire composite skin. A thin layer of matrix is 
inserted at the top and bottom side of the RUC, as our procedure does not create boundaries of 
out-of-plane external faces yet. If needed, this surface mesh can be improved by any auto-
remeshing program. The mesh periodicity is ensured using the method proposed by Jean [23]. 
Finally, the volume mesh is then created by filling the interior of the closed surfaces of the 
surface mesh with tetrahedrons. 
 
3 Multi-scale modeling of a preformed woven composite 
3.1 Modeling the woven reinforcement compaction 
The idealized meso-scale geometry of 4 layers of an unbalanced plain E-glass weave has been 
generated using the Hivet and Boisse model [18], with the parameters summarized in Table 
2This geometry is meshed with hexahedral elements using the commercial software Abaqus 
(Figure 3a). 2D periodic boundary conditions are applied as described in [24], and a FE 
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calculation of fabric compaction is carried out. Parametric representations of the deformed 
yarns are obtained from the resulting deformed hexahedral mesh. 
 
3.2 Construction of the RUC mesh for FE calculation with periodic boundary conditions 
The deformed yarn geometries are post-processed using the procedure described in Section 2. 
The commercial automeshing tools Distene (http://www.distene.com/en/build/offer.html) are 
used to improve the surface mesh quality and to generate a volume mesh of quadratic 
tetrahedrons of the entire RUC (Figure 3b). Kinematic relations are applied between in-plane 
opposite nodes, in order to take into account the periodic nature of the woven reinforcement. 
 

 
Figure 3. a) Mesh of 4 plies of plain weave reinforcement before compaction (total thickness: 2.906mm); b) 

Mesh of the composite with a compacted reinforcement (total thickness of the reinforcement: 1.691mm). 
 

3.3 Micro-scale modeling and homogenized elastic properties of the yarns 
Yarns are composed of locally almost parallel fibers embedded in matrix. At the meso-scale, 
they are represented by a homogeneous material, the properties of which are obtained by 
homogenization at the micro-scale. A FE calculation of a hexagonal micro-scale RUC is 
carried out using isotropic elastic linear behavior for matrix and fiber (material properties are 
given in Table 2). The fiber volume fraction in the yarns used in this calculation is adjusted 
such that the global fiber volume in the composite corresponds to that in the 4 layers of plain 
weave. Hence, the fiber volume fraction in yarns depends on the volume occupied by yarns in 
the RUC mesh obtained previously. 
 

Thickness 0.72 mm      Fiber density 2.6 g.cm-3 

Yarn width 3.7 mm      Fiber young modulus 72000 MPa 

Warp per cm 2.2      Fiber poisson ratio 0.3 

Weft per cm 2. 

 

     Matrix young modulus 3200 MPa 

Weight per unit area 504 g.m-2       Matrix poisson ratio 0.35 

Table 1. Properties of 1 ply of plain E-Glass weave Table 2. Materials parameters 
 
3.4 Yarn orientation 
Since yarn crimp has a strong influence on the mechanical properties of the composite, it is 
important to use the correct local fiber orientation in the meso-scale RUC. The yarn direction 
in each integration point is obtained by orthogonal projection onto the central yarn path of the 
deformed reinforcement. This path is obtained by connecting the geometric centers of the 
sections from the parametric yarn representation. 
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3.5 Meso-scale modeling and homogenized in-plane elastic properties 
The response of the composite RUC to tension in warp and weft direction and pure in-plane 
shear is calculated using the FE software Zset (http://www.zset-software.com/). Homogenized 
in-plane elastic constants are obtained from stress and strain average over the entire RUC. 

 
4 Results and discussion 
The homogenized in-plane elastic properties of the composite shown in Figure 3 have been 
calculated for different compactions using the material properties given in Table 2. The 
results are shown in Table 3 and compared to experimental data measured by means of tensile 
tests. Index 1 corresponds to the warp and index 2 to the weft direction. The thickness of the 
composite without compaction is 2.946 mm. For cases 1 to 5, the fiber volume in the yarns 
(measured experimentally) remains the same. Thus, the fiber volume fraction changes with 
the composite thickness. The calculated in-plane elastic constants increase linearly with the 
fiber volume fraction. For the highest compaction, the homogenized stiffness in the weft 
direction agrees well with the experimental results. 
 

Case Thickness 
(mm) 

Compaction 
rate (%) 

Fib. Vol. 
Frac. (%) 

E11 
(GPa) 

E22 
(GPa) 

G12 
(GPa) 

1 2.946 0 27.64 14.1 13.9 4.39 

2 2.277 22.7 33.99 16.5 16.3 4.84 

3 1.925 34.7 40.01 18.7 18.6 5.58 

4 1.731 41.2 44.72 20.7 20.6 6.06 

5 1.651 44.0 46.88 22.3 21.7 6.61 

exp 1.651 +- 0.02  46.88 +- 1  22.3 +- 2  

Table 3. Calculated and measured in-plane elastic constants 
 
In the presented calculations, the in-plane stiffnesses are slightly underestimated, because the 
fiber volume fraction is assumed to be constant along the yarn path. However, due to 
compaction, the yarn cross section in the straight areas (where the yarns cross) is up to 10% 
smaller than in the crimped areas (see Figure 4). Therefore, with constant fiber volume 
fraction there are less fibers aligned with the load direction and more fibers in the crimped 
areas than in the real composite. This effect should be taken into account by varying the yarn 
properties locally according to the yarn cross section.  
 

 
Figure 4. Local stresses in the direction 1, after a tensile test in the direction 1, for a compaction rate of 41.2 % 

 
 
5 Conclusion 
A new approach to model composite with woven reinforcement at the meso-scale has been 
presented. It takes into account yarn deformation occurring during preforming the 
reinforcement in the manufacturing process. A central part of the approach is a new method to 
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generate woven composite meshes. First, the reinforcement geometry, either obtained from 
geometrical models or from performing simulations, is converted into a simple parametric 
representation, which contains a description of all contact areas between yarns. This 
representation is then used to mesh the entire composite RUC with tetrahedral elements, 
ensuring mesh conformity at the interfaces, continuity of the yarn surfaces, and periodicity at 
boundaries. The entire method is automated, allowing for the generation of large number of 
different meshes needed for parametric studies. Using these meshes, the influence of the 
compaction on the in-plane homogenized elastic constants has been studied. Tensile and shear 
moduli increase linearly with the fiber volume fraction. Imposing a constant fiber volume 
fraction along the yarn path leads to a slight underestimation of the in-plane tensile moduli. 
This can be corrected by varying locally the yarn properties according to the yarn cross 
section. 
The presented method offers a high flexibility and be easily applied to modeling nonlinear 
behavior and the effect of damage. Due to the conform meshing of the contact zones, it is no 
longer necessary to introduce artificial matrix layers between yarns in contact, which reduces 
significantly the computation time. Moreover, cohesive zone elements can be easily inserted 
at the yarn interfaces, and property degradation due to decohesion between yarns can thus be 
modeled. Finally, the continuity of the yarn surface avoids unphysical stress concentrations as 
would occur in voxel meshes, and allow thus for a more realistic estimation of the onset of 
damage at the meso-scale of composites with woven reinforcements. 
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