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Abstract  

Debonding in long fiber reinforced composites (FRC) is studied by the eXtended Finite Element 

Method (XFEM) and the cohesive zone model. The Level-set function is used to localize the 

fiber/matrix interfaces and to enrich the discontinuities. For instance, the jump in deformation at 

the interface is enriched by the absolute function while the jump in displacement is enriched by 

the Sign function. Hence, in presence of debonding the weak enrichment is automatically 

replaced by the strong enrichment. The cohesive model ensures the transition between the 

perfectly bonded interfaces and the debonded ones. This approach provides high performances to 

simulate the interfacial debonding crack. In addition, it is sensitive to the interaction between the 

fibers. The obtained results are compared with the existing analytical and others numerical 

methods. 

 

 

1. Introduction 

In this study we focus on fiber/matrix debonding which is a complex micro-structural cracking 

process and affects locally the composite mechanical behavior. Regarding the existing numerical 

studies of fiber reinforced composites (FRC), the conventional finite elements methods was 

widely used. Numerical methods are of large interest in dealing with complex geometries and/or 

inhomogeneous media, mainly in presence of evolving geometries or growing cracks [1]. In these 

extreme cases, even algorithms using remeshing suffer from difficulties e.g. elements 

inadmissibly distorted, high computational time, and requirement of the mesh to conform to 

cracks. To overcome the burdensome task of remeshing, projection of variables between the 

mailto:Lyazid.bouhala@tudor.lu


ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

different meshes and difficulties in post-process, the extended finite element method (XFEM) is 

successfully introduced; see [2-5]. It alleviates the FEM drawbacks, enhances accuracy and 

reduces computational time. The present study focuses on fibers/matrix debonding using the 

XEFM and the cohesive model. The Level-set function is used to localize the position of the 

fibers within the matrix, to enrich the weak discontinuity along the interfaces and to enrich the 

strong discontinuity where the cracks occur. To highlight the effect of fibers interaction on the 

fiber/matrix debonding, the simulation considers nucleation of crack and its growth along the 

fibers/matrix interfaces for several example tests. 

 

 

2.  XFEM approximation 

The displacement approximation using XFEM consists of three terms; the first term represents a 

continuous contribution, the second one represents the displacement jump through cracks, and the 

third one is used to describe the jump in deformation (displacement gradient) at the interface.  
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Ni(x) are the standard shape functions, Nu is the total number of nodes within the domain and ui 

are nodal displacement, Hi is the displacement enrichment function of nodes in the vicinity of 

cracks, and Gi is the displacement enrichment function of nodes in the vicinity of interfaces, ai, bi 

are the added degrees of freedom, Hi is represented by the sign of the level-set function. While the 

absolute function of the level set function [6] is used as deformation enrichment function Gi at the 

interface. The sign function, the level set function, the strong enrichment function and the weak 

enrichment (Absolute function) are given respectively by: 
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In the present study, an exponential cohesive traction-separation law is used. The damage starts 

when the maximum interfacial strength 
c

 is reached which corresponds to the opening 
0

 and 

ends when the opening reaches the maximum value of 
c

 which corresponds to zero traction. 

 

 

3. Governing and discretized equations 

Using the constitutive law, the energy balance and the XFEM approximation, the weak form of 

the equilibrium state can be simplified as: 
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C  .  2 ( )   0
t c

T Td d dtB B v = N N n                 (6) 

 

Where: C is the material stiffness tensors
t
, 

c
are boundaries of the applied traction forces and 

crack surface respectively, v is the vector of the generalized displacements, B is the strain matrix, 

N is the shape function,  is a parameter to control the loading, n is the normal vector. 

The crack opening in the local coordinates  is calculated from the jump in displacement as 

follow: 
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The integration is performed using Gauss quadratures and element subdivided technique where 

the intersection of the zero-level set function with the element edges is find using the following 

equation: 
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The obtained non-linear problem is solved by iterative schemes. 

 

 
   (a) Sign function                              (b) Absolute function                     (c) Debonding evolution 

 

 

 
Figure 1: One singular fiber model 

 

3.1. Crack growth criterion: 

For perfectly bonded interfaces, we use the normal and the shear (
n
,

t
) tractions resulting at 

the interface. Then, the failure initiation is given by: 

 
2 2

1n t

nc tc

                                                              (9) 

 

Where 
nc

 and 
nt

 are strengths of the interface in the normal and the tangential directions. The 

commonly way to involve both the toughness and the strength is the use of the cohesive model. 
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4. Numerical results 

4.1. Single fiber model: 

The problem studied in [7] is reinvestigated in this test where the composite is subject to a remote 

force along the horizontal direction. The absolute function is active from the beginning of the 

simulation since the fiber/matrix interface is perfectly bounded. Once the crack occurs in the 

fiber/matrix interface, the Heaviside function becomes active and the absolute function deactivate 

along the cracked part. The permutation between the absolute function and Heaviside function is 

ensured by the cohesive law. 

Fig. 1-c shows the crack growth at the fiber/matrix interface. The crack onset takes place where 

the concentration of stresses is maximal. Due to uniform distribution of the calculated stresses on 

both sides of the fiber symmetry is found. The maximum fiber/matrix debonding semi-angle 

obtained is about / 3 . 

 

 
              (a) Level set function                (b) Stress contour in load direction          (c) Debonding evolution 

 

 

 

Figure 2: Vertical double fibers model  / 2  

 

 

4.2. Double inclusions model: 

To take into account the interactions between fibers, a 2D model consists of two fibers reinforced 

matrix is considered. The goal is to show the influence of the fibers configuration within the 

matrix on the debonding evolution. Different scenarios are supposed and handled by the 

parameter  which is the angle between the line connecting the two fiber centers and the 

direction of loading. 
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              (a) Level set function                (b) Stress contour in load direction          (c) Debonding evolution 

 

 

 

Figure 3: Inclined double fibers model  / 4  

 

Three cases are considered: / 2 , / 4  and 0 , but the distance between the center 

of the two fibers is kept the same. The results are compared with those in [8]. In case of 

/ 2 , the progressive debonding is shown in Fig. 2-c, where the debonding behavior and the 

maximum length of the debonded arcs are not sensitive to the interactions between the two fibers. 

In case of / 4 , Fig. 3 shows the results relative to this current configuration. Interface 

debonding occurs only in the two external arcs. In case 0 , (Fig. 4), interface debonding 

occurs also in two arcs but the internal ones. 

 

 
              (a) Level set function                (b) Stress contour in load direction          (c) Debonding evolution 

 

 

 

Figure 4: Horizontal double fibers model  0  

 

 

4.3. Multi-inclusions model: 

This section shows the robustness of the XFEM method in modeling multi-fibrous composites. 

We consider a finite matrix containing a large number of fibers randomly distributed. The 

objective is to visualize the fibers distribution in the matrix using the preceding functions i.e. the 

sign function and the Level-set function. To analyze the debonding crack, we consider two plates 

containing 48 randomly distributed fibers having the same dimensions but different fibers 

diameters. Furthermore, the properties of all the samples are kept the same as in the single model. 

The samples are subjected to two different loading tensile tests where ( 0.15 ) and 
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( 0.25). This parametric study shows the effect of the fibers size and distribution on the 

growth of debonding, see Fig. 5. Thus, for the same loading the response is different from a 

configuration to another, this is due to the change in interaction between the fibers. In Fig. 5 the 

debonding is random and some fibers are stressed more than others. Under low loading some of 

them remain perfectly bonded to the matrix. These last agree well with experimental 

observations. 

 

 
                            (a) 0.15                                                                      (b) 0.25          

 

 

 
Figure 5: Multi fibers randomly distributed model 

 

 

5. Conclusion 

The eXtended Finite Element Method is implemented to study the debonding growth in Fiber 

Reinforced Composites. The cohesive model was used to growth progressively the debonding. 

The fiber/matrix interface is defined implicitly by the Level-set and the bonding is enforced by 

the absolute function. However, the Heaviside function substitutes the Absolute function where 

the crack occurs to enforce the jump in displacement. This technique is efficient to track the 

debonding without any external intervention. It is found that the fibers configurations influences 

the stress distribution in the vicinity of the interfaces and changes the debonding growth process. 

Moreover, the inter-fiber distance plays a decisive role for the debonding nucleation and onset. 

The obtained results are in close agreement with those that use other classical techniques. 
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