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Abstract  
Multiscale micro-mechanics theory is extensively used for the prediction of the material 
response and damage analysis of  unidirectional lamina using a representative volume 
element (RVE). This paper presents a RVE-based approach to characterize the material 
response of a multi-fibre cross-ply laminate considering the effect of matrix damage and 
fibre-matrix interfacial strength. The framework of the homogenization theory for periodic 
media has been used for the analysis of a 'multi-fibre multi-layer representative volume 
element' (M2RVE) representing cross-ply laminate. The non-homogeneous stress-strain fields 
within the M2RVE are related to the average stresses and strains by using Gauss theorem and 
the Hill-Mandal strain energy equivalence principle. The interfacial bonding strength affects 
the in-plane shear stress-strain response significantly. The material response predicted by 
M2RVE is in good agreement with the experimental results available in the literature. The 
maximum difference between the shear stress predicted using M2

 

RVE and the experimental 
results is ~15% for the bonding strength of 30MPa at the strain value of 1.1%.   

 
1 Introduction 
It is important to accurately predict the mechanical behavior of fibre reinforced plastic (FRP) 
composite laminates for their efficient and reliable use in structural applications. Different 
failure mechanisms like matrix failure, fibre fracture, and fibre matrix debonding takes place 
at different scales during the damage process of composites, this leads to complex fracture 
patterns even for simple loading conditions. Therefore, it is important to carefully study this 
complex local damage initiation and evolution at the fibre and matrix level. Use of finite 
element analysis (FEA) based on micro-mechanics theory is a powerful tool, which utilizes a 
'unit cell' or 'representative volume element'(RVE)'model for predicting  local as well as 
global behavior of the composite[1].It is possible to simulate failure of the fibre, matrix and 
interface at the same time using RVE. It is also convenient to study the effect of various 
parameters on damage response of the composite. 
At present, the application of micro-mechanics via a RVE-based model is limited to 
unidirectional lamina [1].The results obtained for unidirectional lamina are used to predict the 
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properties of the laminate at different orientations using various laminate theories [2]. Use of 
such approximate theories restricts the possibility of accurate local  and global damage 
prediction. Most of the RVE-based models typically use a single fibre representing the 
volume fraction of the fibre in the composite which is not a very accurate representation [1]. 
However, a few studies have been reported on the prediction of micro-damage via a RVE 
with multiple fibres [3-4].  The multifibre RVE approach has been used for the prediction of 
in-plane shear strain response of a cross-ply laminate [3]. This can be achieved by applying a 
shear loading parallel to the fibre direction in the RVE and subsequently applying a shear 
loading perpendicular to the fibre direction in the RVE using two different simulations. The 
shear loading parallel to the fibre is expected to offer less resistance to the deformation as 
compared with the shear loading perpendicular to the fibres, where rotation of the fibres takes 
place under this loading. Both the responses are then averaged out to predict the in-plane 
shear stress-stain response of a cross-ply laminate [3]. Another approach to predict the 
material response of a laminate is  to use a multilayer RVE. Studies on multilayer RVEs have 
been reported in the literature with an equivalent single fibre representing the entire volume 
fraction of fibres in the lamina [5-6]. Periodic boundary conditions have been used to obtain 
the global material response. 
 

 
 
 
 
 
 
 
 
 
 
 

 
                                 (a)                                                                          (b) 

Figure 1.(a) Typical RVE and M2RVE (b) Micromechanical representation of an interior element of [0//90]ns

 

 
cross-ply element  

Based on a literature review, it can be inferred that a detailed micro-mechanical model 
consisting of multiple fibres and multiple layers representing a composite laminate has not 
yet been implemented. A multilayer multifibre representative volume element (M2RVE) 
could potentially capture all the damage mechanisms, viz., fibre breakage, fibre-matrix 
debonding, matrix cracking and delamination for any symmetric laminate. Additionally, it is 
a better geometrical representation of the lamina as compared to an equivalent single fibre 
multilayer RVE. The effect of one fibre on the response of an adjutant fibre is considered in a 
multifibre representation, which is closer to reality. This paper explores the possibility of 
predicting the mechanical properties  and the damage response at laminate level using the 
M2RVE approach. A 3D two-cell, lay-up structure of a cross-ply laminate is simulated via a  
multilayer multifibre representative volume element (M2RVE) with periodic boundary 
conditions as shown in Figure 1(a) was created in DIGIMAT®. The thickness of each cube 
was kept as the thickness of the lamina to ensure full periodicity in all three directions. An 
elastic-plastic material model for the epoxy matrix was implemented in ABAQUS Standard®. 
An M2RVE was subjected to an in-plane shear loading in the present paper. The predictions 
from the M2RVE model was validated with experimental results reported in the literature [7]. 
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The proposed model was used to predict the material response of a cross-ply laminate 
incorporating the effect of fibre-matrix bonding strength and matrix failure. 
 
2 Finite Element Modeling of M2RVE 
 
2.1 Numerical formulation of M2RVE 
A random distribution of random fibres, 17 μm in diameter were generated using a fibre 
randomization algorithm in DIGIMAT® [12]  to obtain a nominal fibre volume fraction of 
42.67% [7]. The M2RVE (matrix and fibres) was meshed using standard tetrahedral C3D4 
elements in ABAQUS Standard® [11]. The FE mesh contains 15491 nodes and 54122 
elements as shown in Figure 2 (a). Refined elements were used near the fibre/matrix interface 
to capture the stress gradients.  Cohesive surfaces were used at the fibre/matrix interface to 
simulate the effect of fibre-matrix debonding. 
 
2.2 Boundary and loading conditions 
In a composite material, non-uniform stress and strain states will exist even under uniform 
loading as it is composed of fibres and matrix with vastly different mechanical properties [1-
4]. As mentioned previously, the M2RVE is a representative unit for the cross-ply laminate as 
shown in Figure 1(b) and therefore, can be treated as a periodic array implemented using 
periodic boundary conditions. Periodicity implies that each M2RVE in the composite has the 
same deformation mode and there is no separation or overlap between the neighboring 
M2RVEs. The positions of split fibre sections have been copied on the opposite face of  the 
M2

 

RVE to ensure the periodicity condition as shown in Figure 2 (a). Perfect bonding has 
been assumed between the plies.  

 
 
 
 
 
 
 
 
 
 
 
 

                                         
 
                                    (a)                                                                                   (b) 

Figure 2. (a) Schematic of the meshed M2

(b) In-plane shear loading using M
RVE used for implementation of periodic boundary conditions 

2

 
RVE  

The periodic boundary condition applied on the proposed M2

Eq. (1) shows the displacement 'u
RVE is shown in Figure 2(a). 

i
 

' as a function of applied global loads 

ui= Sijxj+ vi                                                                                                                                                                                           
 

(1) 

where Sij is the average strain and vi is the periodic part of the displacement components ui
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on the boundary surfaces (local fluctuation). The indices i and j denote the global three-
dimensional coordinate directions 1,2,3. An explicit form of periodic boundary conditions 
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suitable for the proposed M2RVE model has been derived from the above general expression. 
For the M2RVE as shown in Figure 2(a), the displacements ui

 

 on a pair of opposite boundary 
surfaces are 

ui
K+= Sijxj

K++ vi
K+

                                              
u

(2)                                                                                                                                                                      
i
K- = Sijxj

K- + vi
K-  

         
 

             (3)                                                                                                                                                                      

where ‘k+’ means displacement along the positive xj direction and ‘k−’ means displacement 
along negative xj direction on the corresponding surfaces A−/A+, B−/B+, and C−/C+ ( see 
Figure 2(a)). The local fluctuations vi

K + and vi
K-

 

 around the average macroscopic value are 
identical on two opposing faces due to the periodic condition. Hence, the difference between 
the above two equations is the applied macroscopic strain condition, given as  

ui
K+- ui

K+ = Sij(xj
K+ - xj

K+

 
)           (4) 

The non-homogeneous stress and strain fields obtained are reduced to a volume-averaged 
stress and strain by using Gauss theorem in conjunction with the Hill-Mandal strain energy 
equivalence principle. Finally, the elastic modulus is obtained as the ratio of the average 
stress to the average strain. The average stresses and strains in the M2

 

RVE are defined by [8-
10] 

𝑆𝑆𝑖𝑖𝑖𝑖 = 1
2 ∫ 𝑠𝑠𝑖𝑖𝑖𝑖𝑣𝑣 𝑑𝑑𝑑𝑑                (5) 

𝐸𝐸𝑖𝑖𝑖𝑖 = 1
2 ∫ 𝑒𝑒𝑖𝑖𝑖𝑖𝑣𝑣 𝑑𝑑𝑑𝑑                (6) 

 
where V is the volume of the periodic representative volume element, Sij and Eij are average 
strains and average stresses in the M2RVE, respectively. Here, sij and eij 

Figure 2(b) shows the in-plane shear loading using the M

represents local 
strains and stresses.  

2RVE. The left face of the M2RVE 
is subjected to a fixed boundary condition. A displacement of 1 mm is applied to all the nodes 
on the right face of the M2RVE. The material response of the M2

 

RVE was used with periodic 
homogenization to predict the global response of the structure. 

2.3 Material model and failure criteria 
All the simulations were carried out in ABAQUS Standard®

 

[11], within the framework of 
finite deformations and rotation theory with an initial unstressed state as the reference. In the 
FE analysis, E-glass fibres were modeled as linear elastic, and isotropic solids and the epoxy 
matrix was assumed to behave as an isotropic, elasto-plastic solid. Elastic constants of fibre 
and matrix are provided in Table 1 [7]. 

                                                                  E (GPa)                                                       v 
E-glass fibres                                                72.4                                                       0.22 
Epoxy matrix                                                 3.2                                                       0.36 
 

Table 1. Elastic properties of matrix and fibres [7] 
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Figure 3. Schematic representation of the failure criterion used for matrix and fibre matrix debonding    

 
During the damage process of the laminates in shear, matrix cracking (transverse cracking) is 
the first damage phenomenon to take place since the matrix has the lowest stress to failure of 
all the composite constituents [1-4]. Therefore, for the cross-ply laminate structure, the 
dominant damage mode is the matrix transverse cracking followed by fibre matrix 
debonding. Although the M2RVE model discussed here is subjected to uniform in-plane shear 
loading,  a tri-axial stress state exists in the individual elements of the model. Consequently, 
the Mohr–Coulomb multi-axial damage criterion is used to model the matrix damage as 
shown in Figure 3. The Mohr-Coulomb criterion assumes that yielding takes place when the 
shear stress, τ, acting on a specific plane reaches a critical value, which is a function of the 
normal stress, σn ,

τ=c - σ tan φ                                (6)   

acting on that plane [3-4].The Mohr-Coulomb criterion can be expressed as, 

 
where c and φ stand for the cohesion and the friction angle, respectively. These two material 
parameters control the plastic behavior of the  matrix. Physically, the cohesion ,c, represents 
the yield stress of the matrix under pure shear while the friction angle takes into account the 
effect of the hydrostatic stresses. In the present work, φ = 150 

The fibre-matrix debonding were simulated using standard traction-separation law  using 
cohesive surface elements with standard traction-separation law . In the absence of damage, 
the interface behavior is linear with very high initial stiffness to ensure the displacement 
continuity at the interface. It also avoids any modification of the stress fields around the 
fibres in the absence of damage. 

 is used to represent the matrix 
behavior  which is within the range determined by Puck and Schürmann [13] and González 
and Llorca [3].The value of  cohesion , c,  is taken as 34.5MPa which is the yield strength of 
the epoxy [7]. It is assumed that c and φ are constant and independent of the accumulated 
plastic strain.  

 
3 Model Validations 
At the end of each load step in non-linear analysis, volume average stresses and strains 
obtained by using equation (5) and (6) were plotted. The in-plane shear stress–strain curves 
for the perfect bonding case, obtained from the numerical simulations for the composite, are 
plotted for two different cases (Figure 4) along  with the experimental data for the cross-ply 
laminates. Due to perfect bonding, the stresses developed in the matrix material gets easily 
transferred to the fibre material. Consequently, the fibres take more load as compared to a 
bonding having a finite interfacial strength. The differences between simulations and 
experiments could be attributed to the assumption of perfect bonding, underestimation of the 
matrix yield stress and the assumption of no inter-ply delamination. 
In addition to the perfect bonding, a finite cohesive strength (tc = 40 MPa) condition was also 
simulated. An interface fracture energy, Ґ= 100 J/m2 was used for all the simulations[3]. As 
the interface strength is close to the matrix yield strength, the initial region of the stress–strain 
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curves for perfect bonding and finite interfacial strength are similar up to a shear strain of 
0.9%. Beyond which, the perfect bonding predicts higher stresses, whereas the response from 
the finite interfacial bonding strength condition approaches the experimental response after a 
strain of 2.5%. 
 

 
Figure 4. In-plane shear stress-strain response of M2

                                              

RVE with perfect and imperfect bonding between matrix 
and fibre 

 
4 Results and Discussions 
 
4.1 Stress and Strain Evolution  

 
                                          
 
 
 
 
 
 
 
 
 

                                (a)                                                        (b) 
Figure 5. (a) Contour plot of the in-plane shear strain in M2

(b) Contour plot of the in-plane shear stress in M
RVE with cohesive strength equal to 40 MPa, 

2

 
RVE with cohesive strength equal to 40 MPa. 
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(perpendicular to the applied displacement) respectively. The strains are shown in Figure 
5 (a), it can be seen that similar strain fields are obtained in both the laminae. However, the 
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stress plots shown in Figure 5(b) are very different because the 900 lamina is stiffer due to the 
perpendicular fibre orientation which induces higher stresses as opposed to the 00

 

 lamina 
where the parallel fibres do not provide sufficient stiffness. As expected, the shear stresses 
developed in the fibres are much higher than those of the matrix in both the cases due to the 
higher modulus of elasticity (72.40 GPa) for the fibre as compared to matrix (3.2 GPa). 

4.2 Interface de-cohesion and the effect of interfacial strength 
It can be observed that stresses are transfers to the fibres via the interface and high stresses 
are developed in the fibres in the case of 900

It is expected that the effect of interfacial bonding strength will affect the in-plane shear 
response. Hence, different cohesive strength values of 20, 30, 40 and 60 MPa have been used 
in the simulations. The corresponding response curves are shown in Figure 6. These results 
shows that the interface de-cohesion limits the load transfer from the matrix to the fibres 
under in-plane shear loading leading to a reduction in the slope of the linear hardening region 
after matrix yielding. It is interesting to note that the onset of the softening precedes de-
cohesion for all the conditions. 

 lamina. Interface failure leads to the reduction in 
the slope of the linear hardening region of the stress–strain curve. The model predictions for 
the behavior of the cross-ply composite, assuming debonding between matrix and fibre are in 
very good agreement with the experimental data [7]. In particular, they are able to account for 
the quantitative effect of damage by interface de-cohesion on the load transfer from the 
matrix to the fibres. 

Figure 6. In-plane shear stress-strain response of M2

 

RVE with different bonding strength between fibres and 
matrix  

5 Conclusions 
From the simulations, it can be concluded that the proposed M2
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RVE can accurately predict 
the in-plane stress-strain response of the cross-ply laminates. The in-plane shear stress–strain 
response of glass-epoxy laminates shows three distinct regimes. The initial, elastic one 
regime only dependes on the elastic properties and volume fraction of matrix and fibres. It is 
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followed by a non-linear region which begins with the onset of matrix plastic deformation 
and a plastic regime at shear strains of 3–4%. 
Following specific conclusions can be drawn from the current work.  
1. In case of perfect bonding between fibres and matrix, the composite shear stresses and 
stiffness values are fairly high. The use of cohesive surfaces significantly alters the in-plane 
shear behavior as well as the load transfer between matrix and fibres. Interfacial failure takes 
place when the cohesive surfaces are used between fibre and matrix.  
2. The slope of the linear hardening region and the strain-to-failure decreases rapidly with 
reduction in interface strength.  
3. Laminate failure occurs at very low strain (before matrix yielding) if the fibre–matrix 
interface shear strength is lower than the matrix yield strength.  
 
References 
 
[1] Vaidya RS, Sun CT. Prediction of composite properties from a representative volume element. Composites 

Science and Technology,56, pp.171–179 (1996). 
[2] Gibson RF. Principles of composite material mechanics. CRC Press (2007). 
[3] Totry E,  González C, LLorca J. Molina-Aldareguía J. Mechanisms of shear deformation in fibre-reinforced 

polymers: experiments and simulations. International Journal of Fracture,158, pp.197–209 (2009). 
[4] Totry E, Molina-Aldareguia J, González C, LLorca J. Effect of fibre, matrix and interface properties on the 

in-plane shear deformation of carbon-fibre reinforced composites. Composites Science and 
Technology,70pp. 970–980 (2010). 

[5] Xia Z, Zhang Y, Ellyin F. A unified periodical boundary conditions for representative volume elements of 
composites and applications. International Journal of Solids and Structures,40,pp.1907–1921(2003). 

[6] Xia Z, Chen Y, Ellyin F. A meso/micro-mechanical model for damage progression in glass-fibre/epoxy 
cross-ply laminates by finite-element analysis. Composites Science and Technology, 60, pp.1171–1179 
(2000). 

[7] U.A. Khashaba. In-plane shear properties of cross-ply composite laminates with different off-axis angles. 
Composite Structures,65, pp.167–177 (2004). 

[8] Kanoute P, Boso DP, Chaboche JL, Schrefler BA. Multiscale methods for composites: A review. Archives 
of Computational methods in Engineering,16, pp.31–75 (2009).  

[9] Geers MGD, Kouznetsova VG, Brekelmans WAM. Multi-scale computational homogenization: Trends and 
challenges. Journal of Computational and Applied Mathematics, 234, pp. 2175–2182 (2010). 

[10] Aboudi J. Micromechanical analysis of composites by the method of cells. Applied Mechanics Review,42, 
pp. 193–221(1989). Abaqus Users’ manual, version 6.7. ABAQUS, Inc (2008). 

[11] Digimat Users’ manual, version 4.2.1, Inc (2011). 
[12] Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological 

models. Compos Science and Technology, 58, pp.1045–1067 (1998). 
 
 
 
 
 
 


