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Abstract 
This study concerns the simulation of the surface quality of continuous fiber-reinforced 
thermoplastic composites. Therefore, a unit cell based on a twill 2/2 fabric was created using 
the TexGen software. The geometry data were generated from composite cross-sections using 
light microscopy. The FE-simulation was done using the tool LS Dyna®. Geometric models 
with a matrix rich surface area were created to evaluate its effect on the surface properties. A 
thickening matrix layer was found to lower the waviness. To investigate nesting effects 
various displacement configurations were simulated by shifting the fabric layer below the 
surface layer in x and x-y direction. The layer alignment strongly influences the surface 
waviness and should therefore be considered in the evaluation of simulations.  

 
 

1 Introduction 
1.1 Organic sheets and obstacles in visible applications 
Thermoplastic continuous fiber-reinforced composites (organic sheets) gain more and more 
importance within different industries such as aerospace, aircraft, and electronics, as well as 
in automotive applications. Organic sheets typically are manufactured using fabric 
reinforcements which lead to fiber volume contents typically around 50 % [1-3]. Having an 
excellent weight to performance ratio they are used as structural and semi-structural 
components e.g. as bumper beams in cars or leading edges in aircrafts.However, when it 
comes to applications where the appearance is of utmost importance organic sheets often do 
not fulfill the required criteria. This mainly isdue to different coefficients of thermal 
expansion (CTE) of matrix and reinforcement and their inhomogeneous distribution within 
the composite (Fig. 1), which leads to visible surface waviness. 

 
Figure 1: Inhomogeneous distribution of fibers and matrix lead to surface waviness. 

 
1.2 State of the art in surface simulation 
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Therefore, the prediction of surface properties is desiredto reduce time and money intensive 
testing. Several groups started to simulate the surface structure of fiber-reinforced composites 
in the past years.Blinzler focused on the influence of different thermoplastic matrix systems. 
In particular he proved that semi-crystalline and amorphous matrices lead to different surface 
waviness due to their aberrant CTE and the absence of crystalline shrinkage for amorphous 
polymers (Fig. 2) [4].  

 
Figure 2: Surface waviness of semi-crystalline (left) and amorphous matrices 

 
Another model was set up bySchubel, Warrior, and Rudd, who concentrated on the influence 
of different roving sizes (3 k, 6 k, and 12 k) in thermosetfiber-reinforced composites. 
Additionally they simulated and experimented with two matrix resins with varying CTE [5]. 
However, current literature showed some simplifications in the areas of heat flow, pressure 
application, and material models, which prevent precise predictions and, therefore,were 
integrated into the model developed in this work. 
 
2 Development of unit cell model 
The geometrical model of the organic sheet materials was created using the TexGen open-
source software and LS Pre-Post from LSTC [6, 7]. The reinforcement is modeled as a twill 
2/2 fabric while the matrix is polycarbonate (Fig. 3). The numerical process simulation is 
done using LS Dyna® from LSTC. 
 

 
Figure 3: Model scheme of twill 2/2 fabric with surface layer 

 
The unit cell was set up using the exact geometrical data from several organic sheets with the 
desired twill 2/2 fabric structure. The roving widths, roving heights, and the spacing between 
two rovings were measured from 24 samples made of polycarbonate (Makrolon 2408) and 
Hexcel HexForce 1102 fabric (Fig. 4). The mean values are given in Table 1. 
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Figure 6: Complete unit cell model with twill 2/2 fabric, matrix, surface layer and press plate 

 
Between the single rovings a thermal-mechanical interaction is set with the contact model 
“nodes to surface”, where a slave and a master segment have to be defined, and the option 
“thermal friction”, which enables contact conductance between rovings. Each slave node is 
checked for penetration through the master segment. When a penetration is detected, contact 
forces are calculated and applied to separate the parts. The contact between rovings and 
matrix is done using the constraint “Lagrange in solid”. It connects the surface nodes of the 
rovings with surrounding nodes of the matrix and allows compression, tension, as well as heat 
transfer between the bonded elements. The press plate and the surface layer with the contact 
model “one way surface to surface”, which enables the load transfer and thermal conductance 
between surface layer and press plate. 
After setting the contact definitions the material models were created. The matrix and surface 
layer have an elastic-plastic thermal model [9, 10]. The Young’s modulus, shear modulus, and 
coefficient of thermal expansion are temperature dependent. 
 

 
Figure 7: Temperaturedependent Young's modulus, shear modulus for the polycarbonate matrix 
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Figure 8: Temperature dependency for the coefficient of thermal expansion of polycarbonate 

 
 The CTE was calculated from data supplied by Bayer MaterialScience AG using equation 1. 
 

αT= Δvೞ
vೞ∙ΔT

  (1) 
 

where αTis the coefficient of thermal expansion, vs is the specific volume, Δvs is the 
difference in the specific volume, and ΔT is the temperature difference. 
 
As the rovings were simulated as solid elements the properties have to be adjusted according 
to theroving volume content Vf of 75 %. Furthermore, the rovings are modeled with an 
orthotropic, thermal material model, where thermal implies a temperature adaptive CTE. The 
orthotropic properties are oriented at a local coordinate system where EA is in fiber direction 
and EB and ECare perpendicular to the roving direction (see equation 2 and 3). It is assumed 
that all filaments are parallel to each other. With the Young's modulus of the matrix EM and 
the Young's modulus of the filament EF the Young's modulus of the roving can be calculated 
using the linear rule of mixture.  
 

EA= φ∙EF+(1-φ)∙EM     (2) 
 

EB=EC= EM
'∙(1+0,85∙φ2)

(1-φ)
1,25

+φ∙EM'
EF

     (3) 

with:     EM
'= EM

1-νM2        (4) 
 
where EF is the  Young's Modulus of the filament, EM is the Young's modulus of the matrix, φ 
is the fiber volume content and νM is the Poisson's ratio of the Matrix. 
 
Thethermal properties are defined in a separate material model and were assumed to be 
isotropic and are similar to the aforementioned matrix model. 
The boundary conditions are set as follows. Due to the mirror symmetry movements of the 
bottom side in z-direction are restricted. To prevent tensions due to the isotropic shrinkage the 
side planes are not fixed, as in reality shrinkage occurs in all directions. The movement 
restraint between roving and matrix is defined within the “Lagrange in solid” constraint. As 
the press plate is just for applying the pressure the movement is restricted in z-direction. As in 
reality the pressure is applied over a period of time. 
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The unit cell’s surface waviness is analyzed  along the diagonal black line showed in Figure 
7, as this path leads to maximum surface waviness. The characteristic waviness values were 
calculated according to DIN EN ISO 4287 [11]. 
 

 
Figure 9: Z-displacement plot of the unit cell surface. The black diagonal line is ued to calculate the 

characteristic waviness values 
 

Figure 8 shows a waviness plot along the diagonal of the unit cell surface. 
 

 
Figure 10: Waviness plot along the diagonal of the unit cell surface 

 
3Results 
3.1 Influence of varying surface layer thickness 
To evaluate the influence of a varying surface layer thickness several simulations with 
varying layer thicknesses (see table 2) were performed.  
 

Start temperature T0 
[°C] 

End temperature Tend 
[°C] 

Pressure p 
[MPa] 

Surface layer thicknesstl 
[µm] 

180 130 1 0, 50, 100, 200, 300  
Table 2: Process parameters temperature, pressure, and surface layer thicknesses 
 
The simulation showed a decreasing maximum waviness with increasing surface layer 
thickness (Fig. 9), where an increasing layer thickness acts as a cover for the fiber print-
through, which is also known for thermoset systems [12]. A 200 µm surface layer decreased 
the waviness around 2 µm.  
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Figure 11: Influence of surface layer thickness on maximum waviness 

 
3.3 Influence of nesting with 2 unit cells  
In reality often more than one reinforcement layer is used and nesting becomes an issue. To 
investigate the effect of various unit cell displacements two configurations were simulated. 
Configuration one is set up with an offset just in x-direction and the second configuration 
with a planar offset in x- and y-direction (Fig. 12).  
 

 
Figure 12: Offset of unit cell in a) x-direction and b) x- and y-direction 

 
It was found that a displacement leads to a decreased maximum waviness. The effect is 
stronger with an offset in both directions. This is due to the decreased depth of the matrix rich 
regions (compare Fig. 1) as the underlying rovings decrease the free volume of matrix and 
therefore reduce the overall shrinkage. 
 

 
Figure 13: Maximum waviness with varying unit cell alignments 
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4Summary 
A unit cell model to simulate the surface quality of continuous fiber-reinforced thermoplastic 
composites during the thermoforming process was developed. It is based on a twill 2/2 fabric 
structure and comprises an elastic-plastic-thermal material model for the matrix and an 
orthotropic mechanical, thermal model for the reinforcing fabric. The geometry data were 
generated from composite cross-sections using light microscopy. It includes a thickness-
adaptable surface layer to investigate the effect of matrix rich surface areas on surface 
waviness.A thickening matrix layer was found to lower the waviness. To investigate nesting 
effects various displacement configurations were simulated by shifting the fabric layer below 
the surface layer in x and x-y direction. The displacement simulations showed a positive 
effect in decreasing the maximum waviness. The simulation showed that the effect of non-
influenceable layer displacement can be as big as the application of surface layers and has to 
be considered in a possible part design. 
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