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Abstract
An experimental investigation of the effects of temperature on the fracture toughness and 
mixed-mode fatigue delamination growth in an aerospace grade fibre reinforced polymer, 
namely IM7/8552, is presented. All the characterization tests have been performed using 
asymmetric cut-ply specimens subjected to four-point bending both at room and elevated 
temperatures. It is demonstrated that the mixed-mode fracture toughness increases with the 
temperature, while the delamination propagation rates decreases at higher severities and 
increases at lower severities. A new semi-empirical equation describing the effects of 
temperature on the delamination growth rates is proposed.

1 Introduction 
Fibre reinforced composites are increasingly employed in primary structural elements in 
several fields of engineering, including aerospace, automotive, naval and civil. Fibre 
reinforced composites have excellent in-plane specific mechanical properties, but they are 
prone to delamination due to their limited out-of-plane strength. Moreover composite 
laminates usually comprise features that act as interlaminar stress raisers e.g. free-edges and 
ply drop-offs, leading to the onset and growth of delaminations. This implies that the onset of 
interlaminar cracks is somehow unavoidable and that a damage tolerance design philosophy 
should be adopted. Thus robust engineering models for the prediction of fatigue delamination 
growth are needed. These must include also the effect of the operative environment, 
temperature in the first place. 

Fatigue delamination growth rates (FDGR) are usually described via power laws that 
comprise the energy release rate (ERR) attained at the delamination tip as independent 
variable [1].  However it has been observed that temperature has a major influence on the 
coefficients that appear in the aforementioned power laws [2-8]. The magnitude and nature of 
such influence strongly depends on the specific nature of the polymer constituting the matrix 
and the glass transition temperature Tg of the latter. If the testing temperature is below Tg, one 
usually observes a progressive increase of the fracture toughness with raising temperatures, as 
well as a reduction of the FDGR at constant ERR.  This behaviour is usually explained by 
observing that for temperatures tending to the Tg polymers exhibit enhanced ductility, while 
cryogenic conditions lead to embrittlement. Clearly there exists a wide range of possible 
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intermediate behaviours between these two extremes. Temperature effects also seem to 
depend on the mode-mixity, albeit there is no consensus in the literature [9-12] about which 
fracture mode is the most affected by temperature and why. Actually many additional features 
may contribute to the effect of temperature on toughness and FDGR in fibre reinforced 
plastics, e.g. presence toughening agents in the matrix, nature of the fibres and residual 
stresses within the laminate, just to mention just a few. 

In the literature, several different specimen configurations have been proposed for the 
characterization of fracture toughness and FDGR in uni-directional composite laminates. 
Some of these have been incorporated into testing standards [13]. Double cantilever bending 
(DCB) and end-notch flexure (ENF) specimens are employed respectively for mode I and 
mode II toughness measurements. Either Mixed-mode bending (MMB) or end-loaded split 
(ELS) specimens [14] can be employed for characterizing mixed-mode fracture. It is worth 
observing that, strictly speaking, the standardization of the testing methodologies mentioned 
above has been carried out only for the static cases, i.e. toughness measurements. For FDGR
there are no available standards, albeit in most of the relevant literature the standard “static” 
specimen configurations are employed in fatigue. However this poses some issues, 
particularly for mixed-mode cases: MMB and ELS loading jigs are quite complex and prone 
to fatigue themselves. The delamination length measurement is carried out via a compliance 
calibration and/or “in-situ” optical measurement of the crack front position. The overall 
process is time consuming and error prone.

Lander et al. [15] proposed to employ asymmetric cut-ply (ACP) specimens subjected to four 
point bending for the characterization of the mixed-mode fracture toughness of uni-directional 
composite laminates. The ACP specimen configuration is essentially an extension of the 
single-edge notched bending (SENB) layout to laminated composites [16]. The main 
advantage offered the ACP layout is that no compliance calibration is required to obtain the 
fracture toughness and this simplifies the testing. Moreover four-point bending jigs are 
relatively simple and robust.

In this paper ACP specimens are employed to characterize the effect of temperature on the 
toughness and FDGR in the carbon fibre-reinforced epoxy IM7/882. It is demonstrated that no 
compliance calibration is required for both the static and the fatigue tests. Also a new semi-
empirical equation that describes the effect of temperature on the FDGR is introduced.

2 Asymmetric Cut Ply Specimens (ACP)
2.1 Energy release rate and mode-mixity
The ACP configuration is sketched in fig. 1. The specimen comprises a mid-section cut, 
which extends from the surface to a prescribed depth t1. Let  denote the ratio of the cut depth 
to the overall specimen thickness t = t1 + t2. For plies having constant thickness, as in the case 
considered here,  simply represents the ratio of the number of cut plies to the total number of 
plies. An insert having total length 2a is placed symmetrically beneath the cut, thus simulating 
the presence of a 2a long delamination, which is allowed to propagate along the overall 
specimen gauge length 2L. 



ECCM15 - 15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012

3

Following the procedure outlined in ref. [15], the mode I GI and mode II GII ERR for the 
ACP specimen are given by:

GI  6M 2
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Where E is the material longitudinal Young’s modulus, M is the applied bending moment and
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Therefore for the mode-mixity one has
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GII
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Figure 1: Asymmetric Cut-Ply Bi-Material Specimen in 4 point bending.
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From eqs. (1)-(5) one can immediately observe that, given a constant applied bending moment 
M, the ERR in ACP specimens is independent from the crack length and so is the               
mode-mixity. Actually the latter depends only on the thickness ratio so it is possible to 
adjust the values of  simply by changing the number of cut plies with respect to the total 
number of plies in the specimen. If  is small, then 1, i.e. a pure mode II regime tends to 
be attained. On the other hand for  1 one finds  0, so the delamination tends to grow 
in mode I dominated conditions. Clearly there are practical limitations on the range of  , 
because cutting a large number of plies would make the specimen extremely compliant. 
Similarly in order to approximate mode II it is necessary to make the specimen relatively 
thick, which invalidates the assumption of zero through thickness shear strains on which the 
ERR and mode-mixity expressions given in eqs. (1)-(5) are based [15]. 

2.2 Large rotation correction
Since the ACP specimen is subjected to four-point bending, large rotations can occur at the 
end tabs. This implies that the relation between the bending moment M acting at the 
delamination tip and the applied force needs to account for such large rotations. 

Figure 2: Specimen rotations and associated forces at the rollers.

As sketched in fig. 2, due to the rotation angle β the actual force applied by the roller onto the 
specimen is given by:

F  P
2cos

(6)

On the other hand the arm between the applied force on the loading roller and the reaction 
force on the static roller is given by:
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Where D is the roller diameter and tT is the thickness of the tabbed region. Therefore the 
actual bending moment per unit width applied during the test is a function of the specimen 
rotation between the rollers and it is given by:

M  F
W

 P
2W cos2 

dx  D tT sin





(8)

Where W is the specimen width.  Assuming the bending and shear deformations in the tabbed 
area of the specimen are negligible; it is possible to estimate the specimen rotation by means 
of the cross-head displacement c only, using the following equation:

tan 
c  D tT  1cos 

dx  D tT sin
(9)

Which has to be solved iteratively. Substituting the solution of eq. (9) into eq. (8) for a given 
load cell force P and cross-head displacement c yields the corrected applied bending moment 
M.

2.3 Estimation of delamination length and growth rates
It is here assumed that fatigue delamination growth tests are carried out in a displacement 
controlled regime. In this case it is possible to derive the delamination growth rates directly 
from the cross-head displacement and load-cell force readings, provided that the loading jigs 
are sufficiently stiff for and the compliance of the machine is negligible.  Let a sinusoidal load 
be applied to the specimen. The deformed shape of the specimen under loading is described 
by the following equations

d̂
ds
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
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(10)

Where, as shown in fig. 3,  ̂ s  is the rotation of the beam section, s is a curvilinear abscissa 

defined along the deformed beam axis, a is the delamination length, M̂ is the peak applied 
bending moment and I 1/12Wt3 is the cross-sectional second moment of area. Let  * be the 
specimen rotation at the delamination tip position s  a and corresponding to the peak 
bending moment. Note that the rotation at the mid-plane, i.e. for s  0 is zero, while the 
rotation at the loading roller, i.e. s  L , is ̂ given by eq. (24) solved for the peak cross-head 
displacement ĉ during the fatigue cycle. In principle any point during the fatigue cycle could 
be considered for the crack length measurement, but at the peak bending moment the force 
applied by the machine is maximum and so the load-cell measurement less prone to linearity 
errors. Also it should be observed that there will always be a delay between the time at which 
the peak force is applied and that for maximum displacement. This is due to the inherent 
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damping in the specimen, so care must be taken in recording the correct peak force and 
displacement values. Integrating eq. (10) one gets:

 *  M̂W
EI 1  3 a

̂  *  M̂W
EI

L  a 

(11)

Combining eqs. (11) and solving with respect to the crack length yields:
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Since the test is run in a displacement control regime (i.e. for a constant peak cross head 
displacement ĉ ), ̂ is constant in eqs. (11)-(12) by virtue of eq. (9).
Thus for the crack growth rate measured in a displacement controlled test one has:

da
dN

 k   ̂EI
WM̂ 2

dM̂
dN (13)

Note that in in eq. (14) the peak bending moment decreases with the number of load cycles, 
since the crack length increases and so does the specimen compliance. Therefore in eq. (13) 
one has dM̂ / dN  0 and the resulting delamination growth rate is positive. Substituting eq. 
(8) evaluated at the peak load into eq. (13) yields the delamination growth rate as a function 
of the applied load 

da
dN

 
k  

2W cos2 ̂
dx  D tT sin 

̂E*I *

WM̂ 2

dP̂
dN (14)

Where ̂ is obtained from eq. (9) evaluated at the peak cross-head displacement. 
Again in eq. (14) one has dP̂ / dN  0 , since when the delamination propagates the specimen 
compliance increases. This proves that using ACP specimens it is possible to measure the 
FDGR during a fatigue test by means of the load-cell readings and the cross-head 
displacements alone.

Figure. 3: Specimen deformed configuration.
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3 Experimental Testing
3.1 Specimen manufacturing
Uni-directional ACP specimen were manufactured using Hexcel® IM7/8552 carbon fibre-
reinforced epoxy. The specimens comprised ten plies, out of which five were cut, giving
 1/ 2 . The nominal cured ply thickness for IM7/8552 is 0.127 mm, giving a total specimen 
nominal thickness of 1.27 mm. The actual thickness measured on the coupons was within 2% 
the nominal value. Uni-directional IM7/8552 has a Young’s modulus E = 161 GPa.

The total specimen length was 190 mm, with a gauge section of 2L = 90 mm and a width       
W = 15 mm. The tabbed areas extended for 50 mm at both the ends of the gauge section. The 
tabs were manufactured using E-Glass/Epoxy 950 pre-preg arranged in a cross-ply stacking. 
The manufacturing process consisted of the lay-up and vacuum consolidation of two initially 
individual ply-stacks made of 5 plies each. One of the two stacks had been cut in half.  A 
20mm long, 12.7µm thick and 15mm wide PTFE film was embedded at the centre of the first 
ply-stack and subsequently covered with the second ply-stack. Thus the film inserts simulates 
the presence of an initial delamination 2a = 20mm long. The two halves of the cut stack were 
tightly pushed together along the cut line, so no central gap is formed. The full laminate was 
de-bulked in vacuum at room temperature for 20 minutes and then cured in the autoclave.  
The tabs were then bonded to the specimens using the Redux 810 bi-component epoxy 
adhesive. The total thickness of the specimen in the tabbed areas was 6.4 mm. 

After curing it was observed that a vertical resin bridge had formed at the cut location, joining 
the two laminate halves and preventing the delamination from opening. The resin join was 
fractured applying a low level of tension to the specimen, taking care that, in the meanwhile, 
no delamination propagation occurred. The specimens were kept in desiccators’ cabinet prior 
to testing. 

In the literature it is reported that artificial delaminations created by the insertion of thin films 
may affect the measured value of the fracture toughness. O’Brien [17] considered ENF 
specimens with Teflon inserts having the same thickness of those considered here. He carried 
out static fracture tests both by growing the delamination directly from the insert and pre-
cracking the coupons by applying fatigue cycles before the static tests. He reported that the 
mode II fracture toughness of IM7/8552 was 50% higher for non-pre-cracked (NPC) ENF 
coupons compared with pre-cracked (PC) ENF specimens. Thus growing delamination 
directly from the film insert may lead to an overestimation of the actual material fracture 
toughness. Such effect is likely due to the fact that the delamination tip for NPC specimens is 
blunted by the presence of the insert, thus increasing the measured fracture toughness of the 
material with respect to PC coupons, for which the crack front is sharp. 

In order to take into account the possible enhancement of the mixed-mode fracture toughness 
due to the presence of the thin films, NPC and PC specimens are also considered here for the 
room temperature tests. The pre-cracking was carried out by symmetrically clamping the 
specimen with metal blocks at a set distance of 20mm from the central cut. A force was 
applied at the cut location on the face opposite to the cut itself until the delamination had 
symmetrically grown to the inner edges of the clamping blocks. The procedure was repeated 
until both sides of the specimen propagated the same amount. C-scans were performed after 
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the pre-cracking in order to check that the position of the delamination front was uniform 
across the specimen width. A sample of the C-scans is presented in fig. 4. 

3.2 Experimental Procedure 
The four-point bending tests were carried out using a jig with roller distance dx = 25mm. The 
loading jig is shown in fig. 5. It comprises a long push rod in order to be used within an 
environmental chamber for testing at variable temperature. The correct positioning of the 
sample within the test rig is of crucial importance for the test accuracy. Therefore an 
alignment tool was manufactured to ensure that the cut position was exactly in between the 
loading rollers. The specimen configuration considered here consists in five cut plies out of a 
total of ten. Therefore eq. (5) yields a mode-mixity  0.43. The static fracture toughness 
was determined for NPC and PC coupons at room temperature, i.e. 20C, 50C and 80C. A 
minimum of three specimens were tested in each case. 

The fatigue tests were run in displacement control, starting from a displacement 
corresponding to 80% of the static strength, with a constant stress ratio R = 0.1. Again three 
temperatures were considered, namely 20C, 50C and 80C. Each test was performed using a 
sinusoidal displacement input with a frequency of 5 Hz and for a total 106 cycles.

Figure. 4: C-scans of pre-cracked specimens.

Figure. 5: 4-point loading jig employed for the static and fatigue tests
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4. Results and discussion
4.1 Static Tests
The static tests for the characterization of the fracture toughness were carried out in 
displacement control mode. The ensemble bending moment versus cross-head displacement 
curves recorded during the tests are presented in fig. 6-8 for the NPC cases, while a summary 
of the fracture toughness values obtained is given in tab. 1. The bending moment was 
calculated from the individual load-displacement curves using the large rotation correction 
presented in sec. 2.2. 

From the NPC tests carried out at 20C and presented in fig. 6, one can observe that the 
applied bending moment increases almost linearly until an average peak load value of 80 N is 
reached at an average displacement of 5.8 mm. This marks the onset of static delamination 
growth. Note that the bending moment is here given per unit width. Further increasing the 
displacement beyond the delamination onset threshold leads to a bending moment plateau
which corresponds to an observed stable symmetric delamination growth with respect to the 
central cut. Thus the bending moment is independent from the crack length, as predicted by 
the analytical solution given in eq. (4). Inserting the experimental value of the bending 
moment for delamination propagation into eq. (4) allows calculating the material mixed-mode 
fracture toughness. The load-displacement curves for the tests carried out on PC specimens at 
room temperature followed exactly the same trend observed for the NPC specimens and the 
associated bending moment for delamination growth show no statistically significant 
difference from that obtained for the NPC coupons. As a consequence, the values of mixed-
mode fracture toughness reported in tab. 1 for NPC and PC specimens are statistically 
identical. Since the pre-cracking has no effect on the measured toughness values at 20C, only 
NPC coupons were considered for the static fracture characterization at 50C and 80C. 

Increasing the temperature has a significant impact on the way delamination propagate under 
static loading. At 50C the delamination grew in a “stick-slip” regime, with discrete jumps in 
length followed by reloading phases. Increasing the testing temperature to 80C further
exacerbated this behaviour, since no symmetric delamination growth is observed beyond the 
cross-head displacement corresponding to the peak bending moment. 

20C 50C 80C

NPC (8)(a) PC (3)(a) NPC (8)(a) NPC (5)(a)

Gc
(kJ/m2)

0.399

(0.034)(b)

0.3919

(0.053)(b)

0.854

(0.136)(b)

1.130

(0.289)(b)

(a) Number of specimens tested
(b) Standard deviation of the fracture toughness

Table 1: Experimental mixed-mode fracture toughness for IM7/8552;  0.43 .
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Figure. 6: Bending moment vs. displacement curves for NPC specimens at 20C; 
average bending moment for delamination growth in red continuous line; 

Red dashed lines give the standard deviation of the bending moment for delamination growth.

Figure. 7: Bending moment vs. displacement curves for NPC specimens at 50C; 
average bending moment for delamination growth in red continuous line; 

Red dashed lines give the standard deviation of the bending moment for delamination growth.
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Figure. 8: Bending moment vs. displacement curves for NPC specimens at 80C; 
average bending moment for delamination growth in red continuous line; 

Red dashed lines give the standard deviation of the bending moment for delamination growth.

The different nature of static delamination growth with respect to temperature can be easily 
appreciated considering the bending moment versus displacement curves presented in fig. 7 
and 8. It is worth observing that the slope of the load-displacement curves in the linear region 
before delamination growth is the same at the three temperatures considered, so the 
temperature increase had no significant effect on the material Young’s modulus E. This has to 
be expected, since the flexural stiffness for uni-directional specimens is fibre dominated and 
the stiffness of carbon fibres is not significantly affected by temperature variations in the 
60C range considered here. 

From fig. 7, one can observe that the extent of the symmetric propagation plateau region at 
50C is considerably smaller than at 20C. The region where the bending moment appears to 
drop is that of asymmetric delamination growth, where the formulas given in eqs. (4) and (8) 
are not applicable any more. For the 80C tests presented in fig. 8, as mentioned above, no 
symmetric delamination growth was observed. Moreover dynamic effects due to the “stick-
slip” behaviour also made the load cell signal considerably noisier than in the 20C case. 
Since for the calculation of the ERR according to eqs. (4) and (8) symmetric delamination 
growth is required, for the 50C tests the ERR estimation was carried out considering only the 
portions of the load-displacement curves where equal interlaminar crack lengths with respect 
to the central cut were actually observed. On the other hand, for the 80C tests the ERR was 
estimated considering the average peak value of the applied bending moment, since 
delaminations grew only asymmetrically with respect to the central cut.

A summary of the toughness values calculated from the tests is presented in tab. 1. Raising 
the testing temperature to 50C doubled the material mixed-mode fracture toughness. At 80C 
the fracture toughness is almost three times that measured at 20C. 
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4.2 Fatigue Tests
During the fatigue tests, the cross-head displacements and load cell force were recorded every 
five cycles. Eq. (13), or equivalently eq. (14), allows computing the delamination growth rate 
directly from the aforementioned data. The delamination growth observed during the tests was 
generally stable, with the noteworthy exception of the first few hundred cycles for the 50C 
and 80C. In these cases the crack initially propagated very fast, i.e. at about 10-2 mm/cycle, 
exhibiting asymmetric length increments with respect to the central cut. This “stick-slip” 
propagation mechanism at relatively large applied loading was analogous to that observed 
during the static tests, albeit less severe. When the delaminations reached a length of 
approximately 15 mm with respect to central cut, the further growth occurred symmetrically 
with respect to the central cut and the “stick-slip” behaviour disappeared. 

It is worth observing that both eq. (13) and (14) comprises a derivative term of the applied 
load, either the bending moment or the load-cell force. The load-cell measurement of the 
applied force is affected by noise and computing its numerical derivative directly from the test 
data introduces further errors. The same is true for the bending moment, which in 
displacement controlled tests is just proportional to the applied force as pointed out by eq. (8).
In order to mitigate the influence of the load-cell noise on the FDGR estimation, the bending 
moment corresponding to each load-cell recording was computed using eq. (8) and then 
interpolated employing the following exponential function

M  1  1 1 e2N3

(15)

Where N is the number of applied load cycles and i i 1, 2, 3 are real valued coefficients. 

The latter were estimated via a nonlinear regression of the experimental data on the model 
function given in eq. (15). This was carried out employing the “NLINFIT” routine available
in MATLAB®. Fig. 9 shows an example of the level of accuracy achieved by employing the 
interpolation scheme described above. Clearly the nonlinear regression has to be repeated on 
the data recorded for each of the tests. Once the interpolation parameters i i 1, 2, 3 had 
been identified via the nonlinear regression, the delamination growth rates were computed 
using eq. (13) by considering the derivative of eq. (15) in analytical form.

A summary of the results of the fatigue tests is presented in fig. 10. Here the FDGR are 
plotted against the peak ERR Ĝ applied during the test. Due to the unstable nature of the 
crack propagation at the beginning of the fatigue tests for the 50C and 80C cases, the FDGR 
values considered in the summary chart in fig. 10 have been limited to 10-3 mm/cycle. Above 
this value the load-cell signals are extremely noisy and it is not possible to extract statistically 
meaningful information from the raw test data. 

From fig. 10 one can observe that at higher severities, i.e. for relatively large Ĝ values, the 
fatigue delamination growth is delayed when the temperature is increased. Moreover the slope 
of the FDGR decreases significantly with temperature. However the FDGR curves cross at a 
peak ERR of about 0.22 kJ/m2. Therefore at the lower severities, i.e. in a near threshold 
regime, the FDGR at 50C and 80C are larger than those characterizing the delamination 
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propagation at 20C. This effect is extremely important from an engineering point of view, 
since the near threshold regime is that usually considered for the damage tolerance design of 
composite structural elements. Fig. 10 proves that an increase in static fracture toughness does 
not necessarily correspond to a better performance in fatigue in the case where a near 
threshold regime is considered. 

Figure 9: Data reduction via the interpolation function in eq. (15); NPC specimen at 20C; Experimental 
bending moment in blue line and interpolation in red line

Figure 10: Delamination growth rates as functions of the peak ERR.
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4.3 Semi-empirical fatigue delamination growth law
An alternative presentation of the experimental data obtained during the fatigue tests is shown 
in fig. 11. Here the peak energy ERR Ĝ is normalized with respect to the static fracture 
toughness values for each temperature, as given in tab. 1. The FDGR curves with respect to 
the normalized ERR do not intersect any more and they are spaced apart on the chart plane. In 
order to represent the data in fig. 11, the following semi-empirical equation is proposed

da
dN

 C Ĝ
Gc











b T0
T










(16)

Where C, b and are material dependent fatigue parameters, T is the testing temperature and 
T0 an arbitrary reference temperature. 
When T  = T0, the semi-empirical equation given in eq. (16) reduces to a standard Paris crack 
propagation power law [1]. Therefore, for the fatigue data set considered here, setting T0 = 
20C allows identifying the material coefficients C and b directly from the room temperature 
tests. Once C and b are known,  is estimated from the experimental FDGR at T ≠ T0 via a 
nonlinear regression based on the modified power law in eq. (16). In principle, a single FDGR 
curve at T ≠ T0 is sufficient for estimating  and so the FDGR trends for arbitrary 
temperatures, provided that the associated fracture toughness is known. However the 
emphasis here is not on demonstrating the predictive capabilities of eq. (16), but on proving 
that it represents a suitable data reduction tool for describing the temperature effect on FDGR. 

Considering the mathematical form of eq. (16), one can observe that in double logarithmic 
axes it describes a locus with all lines intersecting at the point of abscissa Ĝ / Gc 1 and 
ordinate C. These lines described the stable fatigue propagation regime of delaminations at 
arbitrary temperatures. The slope of the lines is inversely proportional to T  , so it decreases 
when the temperature increases. This produces a clockwise rotation of the FDGR lines in 
double logarithmic axis with increasing temperature; the rotation takes place with respect to a 
pivot point that represents static fracture according to the Griffith criterion, i.e. Ĝ / Gc 1. 

When Ĝ / Gc 1 the FDGR is nominally infinite, but clearly eq. (16) can represent only stable 
delamination growth. 

From a qualitative point of view, one can observe that the FDGR curves in fig. 11 indeed 
rotate clockwise when the temperature is increased. However the existence of a common 
projected intersection at Ĝ / Gc 1 is debatable. Actually the data for the 50C do not lie on a 
standard Paris law trend, but this is due to the fact that only one specimen has been tested and 
the data set is still too sparse. Therefore further experimental tests are required to validate        
eq. (16).

Performing a non-linear regression of the experimental data by means of the model function 
given in eq. (16) yields the following material temperature-dependent parameters

C  4.4103mm/cycle; b 12.90;   0.943
(17)
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The interpolated trends given by eq. (16) with the coefficients from eq. (17) are shown in fig. 
11 as continuous black lines. The quality of the fit is satisfactory, being the overall coefficient 
of determination at 90%. 

Figure 11: Delamination growth rates as functions of the peak normalized ERR; 
FDGL are the predicted trends from the semi-empirical fatigue delamination growth law in eq. (16).

6 Conclusions
The mixed-mode fracture toughness of IM7/8552 has been characterized using ACP 
specimens. Three testing temperatures have been considered, namely 20C, 50C and 80C. A 
strong increase of the fracture toughness with temperature has been observed for the 
aforementioned material. The fracture toughness at 50C is double that measured at 20C; 
further increasing the temperature to 80C raises the fracture toughness threefold with respect 
to the 20C datum. The increase in fracture toughness is accompanied by a transition from a 
progressive stable delamination growth to a “stick-slip” regime, where the delamination 
advances in discrete unstable length increments. No differences in fracture toughness were 
observed when growing the delamination directly from the insert film with respect to pre-
cracking the specimens. 

ACP specimens have also been employed for characterizing the mixed-mode fatigue 
delamination growth in IM7/8552 as a function of the testing temperature. The experimental 
results point out that, at relatively high severities, increasing the temperature delays the 
fatigue delamination growth. The opposite effect is observed at low severities, i.e. in a near 
threshold regime, where increasing the temperature actually speeds up the fatigue 
delamination propagation. 

A new semi-empirical power law with a temperature dependent exponent has been introduced 
to describe the effect of temperature on fatigue delamination growth. The semi-empirical 
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model provides a satisfactory fit of the experimental data, although further tests are still 
required to fully validate it. 
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