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Abstract 

 

3D X-ray computed tomography (CT) was used to study the effects of particle toughening 

within unidirectional carbon fibre reinforced polymer (CFRP) materials subjected to impact 

damage, followed by ex situ CT of compression after impact (CAI) tests at incremental loads. 

A multi-scale approach utilizing synchrotron radiation CT and laminography was used to 

study the damage micro-mechanisms of impact-loaded specimens, and micro-focus CT (µCT) 

assessed damage at meso- and macro-scopic levels. For the ex situ compression after impact 

testing, plates were CT scanned after progressively larger compressive loads were applied. 

Particle toughening processes were observed, with damage growth and micro-buckling 

events being captured close to the final failure in the CAI test. 

 

1 Introduction 

Due to their high strength and stiffness to weight ratios, CFRP materials are increasingly used 

on primary and secondary aircraft structures. One of the concerns however is their poor 

resistance to impact damage, which has a direct effect on the residual compressive strength of 

the material. Due to the level of threat of impact throughout the service life of the aircraft, 

this poses a serious problem to aircraft operators and manufactures [1]. 

 

 

The detectability of impact damage becomes problematic at the barely visible impact damage 

(BVID) level at which point significant internal damage exists beneath the surface of the 

material [2]. Whilst this internal damage can be detected with ultrasonic techniques, damage 

can go unnoticed for some time in between service inspections [3]. This calls for better 

damage resistant and damage tolerant materials to be developed; which requires a better 

understanding of the damage behavior after an impact event and subsequently how this 

damage contributes to final compressive failure. 

 

 

The development of CFRP structures has hitherto been largely empirically-based. Whilst 

experimental mechanics and instrumented testing can identify materials with better 

properties, the key to developing better materials is to study the internal damage mechanisms 
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caused by impact and their role in influencing the residual strength under in-plane 

compression. Current techniques include ultrasonic C-scan and optical methods however 

these have their limitations and in particular they are restricted to generating two dimensional 

(2D) images of damage [4, 5]. Considering the three-dimensional (3D) micro-level damage 

behavior and the various types of damage modes within the material, 3D X-ray tomography 

and laminography offers the ability to carry out the necessary 3D damage assessments [6-11]. 

 

 

There is an intrinsic tradeoff between the field of view and voxel resolution of conventional 

CT scanning and in this work a multi-scale approach was undertaken. To achieve the highest 

possible resolution, synchrotron radiation CT (SRCT) and laminography (SRCL) allows 

damage micro-mechanisms to be captured, and in previous studies, this has worked well [7, 

8]. To study the overall macro-level damage characteristics, a combination of multiple scans 

at a lower resolution can be used to provide a larger field of view. This is typically up to 

10x10x10mm at 5µm voxel resolution using a 2000x2000 pixel detector. The voxel 

resolution used is often greater than the finest damage features, such as near-tip crack 

openings, however the partial volume effect can be exploited; allowing sub-voxel features to 

be detected with a reduction in contrast between crack and material [10]. Contrast may also 

be increased with the use of contrast agents, such as iodine-containing solutions; however this 

requires interconnections of the damage to allow full penetration of the dye [10]. 

 

 

Due to the high aspect ratio of plates, there are large variations in X-ray path length as the 

sample rotates as shown in Figure 1(a); this leads to variable attenuations in the radiograph 

data. To allow for the highest possible resolution and fidelity of CT scan, regions of interest 

of more isotropic cross-section (e.g. circle or square) are required to be physically removed 

from the larger, original test specimen, rendering the technique destructive. Laminography 

can avoid such issues in high aspect ratio planar objects by tilting the rotation axis shown in 

Figure 1(b) [9]. This maintains an essentially constant X-ray path length through the object 

and has successfully been used in previous studies on composite material [7].  

 

 

There are two main purposes to this work; the first serves to illustrate the feasibility of these 

techniques to assess impact damage and its subsequent influence on final failure under 

compression; the second aim is to gain a better understanding in the role of particle 

toughening within the CFRP material. A combination of 3D multi-scale imaging and ex situ 

CAI experiments qualitatively shows damage interactions and progression from an impact 

event, leading up to final compressive failure.  Direct comparisons between non-particle and 

particle toughened systems will be assessed. 
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Figure 1. Schematic comparison of geometries associated with: (a) SRCT and (b) SRCL 

 

2 Materials and testing methods  

 

2.1 Materials 

Two geometries of CFRP material were used. For studying impact damage, an 8 ply sample 

with a [-45, 90, +45, 0]S layup was used, measuring 80x80x~1mm. The 1mm thickness was 

chosen in keeping with previous laminography studies. To study the effect of CAI, ASTM 

standard samples 150x100x~4.5mm were used with a [-45, 90, +45, 0]3S layup. Samples were 

C-scanned to check for defects. 

 

2.2 Mechanical drop tower testing 

A drop tower with a 4.9kg, 16mm diameter hemispherical striker was used. The height of the 

drop was adjusted to achieve the desired impact energy. Specimens were loosely clamped 

onto a base plate; this contained a 60mm diameter hole for the 1mm specimens, and a 

rectangular window measuring 125x75mm for the 4.5mm thick specimens. Samples used for 

impact damage assessment were impacted to achieve a damage radius of approximately 5mm 

when measured by C-scan. This required toughened and non-toughened specimens to be 

impacted at 1.3J and 0.6J respectively. Preparation of these impacted samples prior to high 

resolution CT scanning involved cutting out regions of interest approximately 4.5mm wide 

across the height of the sample. 

 

2.3 Ex situ CAI CT testing 

Samples used for this experiment were impacted at 30J. These were placed in an anti-

buckling device and progressively loaded in compression by incremental load steps, with the 

first step occurring when audible damage was detected. In between steps, the sample was 

taken out and scanned on the µCT scanner. 
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2.3 3D X-ray computed tomography 

µCT scans were undertaken at the µ-VIS X-ray Imaging facility at the University of 

Southampton, UK. SRCT and SRCL scans were carried out using beamline ID19 at the 

European Synchrotron Radiation Facility (ESRF), France. 

 

2.3.1 Micro-focus CT 

There are three roles that µCT served in this work. The first was to identify regions of interest 

in samples for SRCT work. The second role was to capture the entire damaged region 

combining a stack of multiple ‘matchsticks’ extracted from damage regions, with the multiple 

CT dataset then stitched back together shown in Figure 2. Finally for the ex situ CAI work, 

whole plates were imaged in the CT scanner (intact), with the direction of loading parallel to 

the rotation axis. 

 

‘Matchstick’ specimens (approximately 50x4x2mm) were scanned at a voxel resolution of 

4.3µm at 80kV and 80µA over 2001 projections. Local scans of the plates where carried out 

for the ex situ CAI work, this was done at the maximum voxel resolution determined by the 

clearance distance between the sample and the target giving a voxel resolution of 12.5µm, 

using a tube voltage of 105kV. 

 

 

Figure 2. ‘Matchstick’ sample preparation across damage areas for CT analysis 

 

2.3.2 SRCT 

SRCT was performed at the European Synchrotron Radiation Facility (ESRF), Grenoble. 

Regions of interest identified from the µCT work were scanned at a voxel resolution of 

1.4µm. 

 

2.3.3 SRCL 
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A second set of impacted specimens were used to carry out SRCL work at a 0.7µm voxel 

resolution. Local regions of interest were scanned within a quarter of the damage area 

identified from ultrasonic C-scan analysis, see Figure 3. 

 

 

Figure 3. Regions of interest imaged via SRCL. 

 

2.4 Visualisation 

Reconstructed volumes were analysed using VG Studio Max. SRCT volumes were 

concatenated together from multiple scans to form a larger volume. Different crack modes 

from SRCT and SRCL were identified and segmented semi-automatically using a region-

growing tool to form a 3D representation of damage. Additionally, 2D cross-sectional slices 

of damage at different orthogonal planes were assessed to confirm reasonable representation 

in the 3D segmentations. 

 

3 Results and Discussion 

 

3.1 Impact damage assessment 

After stitching together multiple µCT scans, segmentation revealed the extent of impact 

damage within the material, as shown in Figure 5. A distinct conical pattern of damage 

surrounding the impact region is shown, with clear interactions of delaminations occurring 

between matrix cracks, consistent with matrix cracking having occurred first, initiating 

delaminations at the interply regions, as suggested in previous work [4, 5]. Comparisons 

between toughened and non-toughened systems reveal similar damage behavior and extent of 

intralaminar damage, however a significant reduction to the extent of delaminations was 

revealed in the particle systems, indicative of the distinctive role of toughening particles in 

the interply region.    

 

 

SRCL facilitated high resolution non-destructive 3D analysis of impacted material, revealing 

internal damage down to the micro-level, comparable to SRCT. A direct comparison between 

the two material systems is shown in Figure 6. It is evident that particle toughened system 

incorporates a thicker resin rich region at the ply interface (~30µm thickness). Additionally, 

these particles lead to local coarser echelon crack geometry, with large bridging ligaments in 

the region of 30µm (confirmed by SRCT also). 
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Figure 5. 3D segmentation of impact damage comparing non-particle and particle toughened 

material. Blue highlights delaminations; other colors represent matrix cracks occurring on 

different plies. 

 

 

 
Figure 6. SRCL cross section showing a comparison of the delamination micromechanisms 

between a particle toughened and a non-particle toughened system 
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3.2 Ex situ CAI damage progression 

By utilizing the µCT scanner within a program of interrupted CAI tests, damage progression 

has been monitored as a compressive load is applied at increasing levels. Preliminary work 

revealed evidence of crack growth and increased crack openings at 99% of the critical failure 

load (see Figure 7), consistent with the assertion that the primary mechanism of failure in 

compression after impact is local buckling of the impacted region, rather than extensive 

subcritical damage growth.   Early stages of micro-buckling were observed occurring 

internally on the load bearing 0° plies and is shown in Figure 8 for the toughened systems. 

[12-14].  

 

 

 

Figure 7. Through-thickness µCT slice, with arrow indicating impact location for a) after 

impact and b) after a 99% of failure load for a particle toughened system 

 

 

Figure 8. In-plane µCT slice showing a 0°/45° ply interface a) damage after impact and b) 

micro-buckling occurring at 99% of failure load for a particle toughened system 

 

 

4 Conclusions 

µCT, SRCT and SRCL was successfully used to capture damage conditions associated with 

CAI at multiple-scales.. Segmentation of the µCT scans reveals a similar extent of matrix 

cracking with particle and non-particle toughened systems, however reductions in 

delaminations were observed. SRCL showed micromechanical differences between 

toughened and non-toughened material systems, where the effects of particle toughening at 
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the ply interfaces were seen crack bridging and blunting. µCT scans of interrupted CAI tests 

revealed damage propagation and micro-buckling events occurring at near-critical failure 

loads (99% of maximum). 
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