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Abstract 
This work is conducted as a part of a wider international activity on mixed mode fractures in 
beam-like geometries under the coordination of European Structural Integrity Society, 
Technical Committee 4. In its initial phase, it considers asymmetric double cantilever beam 
geometry made of a linear elastic material with varying lower arm thickness and constant 
bending moment applied to the upper arm of the beam. A number of relevant analytical 
solutions are reviewed including classical Hutchinson and Suo local and Williams global 
partitioning solutions. Some more recent attempts by Williams, and Wang and Harvey to 
reproduce local partitioning results by averaging global solutions are also presented. 
Numerical simulations are conducted using Abaqus package. Mode-mixity is calculated by 
employing virtual crack closure technique and interaction domain integral. Both approaches 
gave similar results and close to the Hutchinson and Suo. This is expected as in this initial 
phase numerical results are based on local partitioning in an elastic material which does not 
allow for any damage development in front of the crack tip. 
 
 
1 Introduction  
Current fracture tests on composite laminates and composite adhesive joints make extensive 
use of beam-like geometries such as double cantilever beam (DCB), asymmetric DCB 
(ADCB), fixed ratio mixed-mode (FRMM), end loaded split (ELS), etc. Different mode-
mixities can be obtained using different test configurations with beam arms of the same 
thickness: with GI/G=1 using DCB, GI/GII=4/3 using FRMM, and GII/G=1 using ELS, or by 
varying the arms thickness in an ADCB configuration. Here GI, GII and G=GI+GII stand for 
mode I, mode II and total fracture energy, respectively. The tests are normally analysed using 
analytical or numerical methods, each of which suffers from a number of uncertainties.  
 
The present work attempts to shed some light on both analytical and numerical approaches 
and ultimately develop a testing protocol and recommendations for the accurate determination 
of mode-mixity in beam-like geometries. At this initial stage, only linear elastic ADCB 
geometry is considered.  
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2 Analytical solutions  
The problem to be analysed is shown in a general form in Fig.1. The total energy release rate 
may be computed exactly from 
 

                   
  (1) 

 
where  , ,  and .  
 

 
Figure 1. Loading and geometry 

 
G may be partitioned into mode I and II by means of MI and MII, the moments contributions 
for each mode, such that

  

                   
  (2) 

 
where λ1,2 are functions of γ. Thus, GI and GII may be found from MI and MII, respectively, as 
 

                   
  (3) 

 
There are two unknowns, λ1 and λ2 and one condition, i.e. GI+GII=G, which gives 
 

                   
  (4) 

 
For the symmetric case of γ = 1 we have, X3 = X4 =7 and λ1 = λ2 = 1, and exact solutions; for 
k = 0, i.e. the lower arm is not loaded, and . For  there are no 
exact solutions and the mode partition depends on the stress state at the crack tip.  For a 
purely elastic state there is singular stress field near the crack tip whilst in cases where 
damage (cohesive) zone of finite size develops in front of the crack tip this singularity is 
removed, either partly or completely. 
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2.1 The Williams solution 
The form of the solution may be determined from the observation that for no crack opening 
(mode II) λ1 = γ3 and for no sliding on the crack face (mode I) λ2 = γ2. This pair does not 
satisfy Eq. (4) and results in two following pairs 
 

                   
  (5) 

 
The first pair represents the Williams pair [1] or the upper-bound solution (W-UB), with 
 

   (6) 

 
The second pair represents the Wang and Harvey pair [2-4] (see Section 2.3), which with 
Equation (3) produces lower bound solution (W/WH-LB) 
 

    (7) 

 
 
2.2 The Hutchinson-Suo solution 
Hutchinson and Suo (H&S) partitioned the fracture energy using analytical expressions for 
mixed-mode intensity factors with numerically calculated and then linearly approximated 
parameter [5]. Their solution here, however, is shown in form of Equation (3) with 
following values for λ1 and λ2 (W-H&S) 
 

 ,      (8) 

 
and parameter  being an approximation of parameter in the following form 
 

   (9) 

 
It has to be noted that Equations (8) and (9) are valid for 1<γ <∞ only, but can be adapted to 
account for 0<γ <1 as well. For this range, one should use 1/γ  instead of γ  in Equation (9) 
and swap λ1 and λ2, Equation (8), when using Equation (3). 
 
 
2.3 The Wang-Harvey solutions 
Wang and Harvey applied both pairs of Equation (5) to Euler and Timoshenko beam theories. 
Timoshenko partition rule, with no interactions between mode I and Mode II (pairs in 
Equation (5) coincide), recovered lower bound solution (Equation (7)). On the other hand, in 
Euler beam theory crack tip shear force has to be taken into account, discovering stealthy 
interaction between pure modes. As a result, the lower bound solution is modified to account 
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for interaction between pure modes, leading to the Wang and Harvey upper bound solution 
(W&H-UB). More details can be found in [2-4] with following final values for mixed modes: 
 
   (10) 
 
In their work [2-4], Wang et.al. also proposed the averaged partition rule (W&H-avg) where 
the lower and their upper bound solutions are averaged, leading to the following mixed modes  
 

   (11) 

 
 
2.4 The Williams average solution (W-avg) 
It is proposed here that an average of two pairs in Equation (3) must be generated depending 
on the size of the singular zone present and that this can be defined for the k = 0 and γ → ∞ 
case, leading to the upper, ie. (GI/G)∞=1, and lower, ie. (GI/G)∞ =0.25, bounds and intermediate 
value given by 
 

   (12) 

 
For the singular case f=0.5, i.e. equal sharing, and  and for no singular field, f 

= 1 and , pure mode I. Intermediate values are deduced by interpolation between 
γ = 1 and ∞ by the parameter n defined as  
 

   (13) 

 
Substituting equation (13) into equation (4) gives two equations 
 

   (14) 

 
with ‘+’ for λ1 and ‘–’ for λ2. Using Equation (14) as γ → ∞, one can recover relationship 
between f and n as  

   (15) 

 
and for f = 1,  n → ∞ and for f=0.5, . For any f value n may be found from Equation 
(15), and for each γ value λ1 and λ2 found from Equation (14). These are then used with Eq. 
(3) to obtain GI and GII. 
 
3 Numerical solutions 
Two post processing methods were used to predict the mode mixity for the 2D plain strain 
problem posed in Fig.1. The length of the beam was 120 mm with 60 mm precrack length and 
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in this purely elastic case, the crack initiation and propagation are not considered. Bending 
moment was applied to the upper arm only (k=0), and the numerical simulations were carried 
out using the commercial software Abaqus. All simulations, unless otherwise stated, use a 
structured orthogonal mesh with quadratic, plain strain, CPE4 elements. The width t, of the 
sample was kept constant at 1 m. To achieve varying h1/h2 ratios, h1 was kept constant at 
3mm while h2 was varied between 0.3, 0.6, 1.5, 3, 6, 15,& 30mm. The two techniques used to 
numerically calculate the mode I and mode II energy release rates were the Virtual crack 
closure technique (VCCT) [6] and Interaction domain integral (IDI) [7,8].  
 
 
3.1 The VCCT technique  
This method, as described in [6], uses global nodal forces, , ahead of the crack tip and the 
differences in the vertical and horizontal nodal displacements, , behind the crack tip 
to calculate the individual energy release rates. Below are the VCCT formulae used for the 
case of quadratic elements with mid side nodes.  
 

   (16) 

 
where each term is explained in Fig. 2. This method was implemented manually for each case 
using the relevant Abaqus outputs of global nodal force and nodal displacements. 
 

 
Figure 2 VCCT technique [6] 

 
 
3.2 The IDI technique 
This method, which is described in more detail in [7,8], is pre-implemented within the 
Abaqus code. The method imposes an auxiliary field (superscript (2)) of known singular 
solution on to the actual mixed mode field (superscript (1)) which results in a new field 
(superscript (0)). The J integral of this new field can be expressed as 
 
   (17) 
 
where  is known as the interaction integral and can be evaluated as a domain integral 
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   (18) 

 
where N is the number of Gaussian points within each element in domain A and wp are the 
corresponding weights associated with each Gaussian point. q is an arbitrary continuous scalar 
function which varies from a value of 1 at the crack tip to a value of 0 at the domain 
boundaries. All quantities inside braces {} are evaluated at the individual Gaussian points. 

 is the mutual potential energy density defined by 
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It can be shown that 
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Therefore, if the auxiliary singular field (2) is chosen such that it is possible 
to calculate  from Eq. (19) and if the auxiliary field is chosen such that 
it is then possible to evaluate . The individual energy release rates of the actual field can 
then be evaluated using 
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4 Results 
The analytically and numerically obtained values of GI/G are presented in Fig.3 for each 
configuration of h1/h2. It can be seen that only averaged solutions (W-avg and W&H-avg) are 
close to Hutchinson and Suo (H&S and W-H&S) and numerical predictions; other solutions, 
representing lower and upper bounds, cannot be used to predict this type of problem. On the 
other hand, the numerical solution is very close for both the VCCT and IDI methods. The 
values quoted for GI/G for both the VCCT and IDI methods are obtained by extrapolating 
convergence trend-lines to zero (see Section 4.1). It is interesting that this solution always lies 
between that of Hutchinson and Suo and averaged solutions. Also worth noting is that the 
result of Hutchinson and Suo cannot be taken as exact as it also requires numerical 
calculations which can lead to possible errors of 1% [9]. 
 
 
4.1 Convergence of VCCT and IDI methods   
The convergence trend-lines shown in Fig.4a highlight some interesting properties of both the 
VCCT and IDI methods. Surprisingly the values of GI/G, by VCCT method, do not 
monotonically converge. For each case of h1/h2 > 1, GI/G reaches a maximum and then starts 
to decrease as the mesh is further refined. Contrary to this, when h1/h2 < 1, GI/G reaches a 
minimum and then begins to increase as the mesh is further refined. This behaviour was first 
reported by Nairn [9] and it is verified here. It was found that a best fit quadratic equation 
excellently approximates the VCCT convergence pattern and it was therefore used to obtain 
the extrapolated values.  
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Figure 3. Plot of GI/G vs. h1/h2 for all numerical and analytical solutions 
 
On the other hand, the IDI method does show clear linear monotonic convergence for each 
case of h1/h2. Figure 4b shows a representative close up of the convergence pattern for each 
method. Note that the convergence of two IDI methods, namely, regular and singular, refer to 
the type of mesh used in the crack tip region. Abaqus documentation [10] recommends that 
collapsed singular elements are used at the crack tip in order to obtain the most accurate 
results from the IDI method. This is indeed verified as shown in Fig. 4b and it also highlights 
that the IDI method applied to a regular orthogonal mesh will only be accurate if convergence 
tests with extrapolation to zero are carried out.  
 

 
Figure 4. Convergence of VCCT and IDI methods: (a) for each h1/h2. (b) for h1/h2=0.5. 

 
For all cases, the IDI method predicted G with very good accuracy (max error <0.02 %). For 
h1/h2<1, the VCCT method predicted G very accurately even for coarse meshes (max error < 
0.01%). However, for h1/h2>1 VCCT convergence curves exhibit irregular, oscillatory 
patterns which resulted in increasing inaccuracy of G as the mesh was refined, see Fig. 5b, 
which also lead to minor deviations from the quadratic convergence pattern of GI/G, see Fig. 
5a. Arguably, the irregular convergence patterns might be caused by inability of the numerical 
solutions to accurately predict high gradients very close to the crack tip. Interestingly, this 
erratic behaviour when h1/h2>1 was not reported in [9] where similar tests were carried out 
using the finite element software NairnFEA. Further investigations will be carried out to 
determine the exact cause of this behaviour. 
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Figure 5.  h1/h2=10 analysis: (a) Convergence of VCCT and IDI methods. (b) G % Error plot 

 
 
5 Conclusions 
Numerical results on mode partitioning in elastic ADCB geometry closely followed 
Hutchinson and Suo local predictions. This is as expected since the simulations did not allow 
any damage development in the specimens and hence the singular field was preserved in the 
crack tip region. Small differences between numerical and analytical results may be attributed 
to the fact that Hutchinson and Suo solution is not exact (involves numerically calculated and 
then linearly approximated parameter ( ) and also to numerical extrapolations to zero 
element size. Averaged Williams, and Wang and Harvey solutions were found to be 
reasonable approximation of Hutchinson and Suo solution. Both VCCT and IDI techniques 
produced accurate results. While VCCT is simpler to implement it was found to experience 
irregular convergence behaviour unlike IDI. As real experiments deal with real materials, the 
next phase of the work will focus on simulations involving damage development. 
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