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Abstract:  
We recently developed a simulation tool to simulate a quite wide class of infusion processes 
based on a compressible porous media theory formulation involving three constituents, solid, 
fluid and pore gas embedded in the voids. The aim of this tool is: firstly to model the highly 
deformable preform and its interaction with external loading and the intrinsic fluid pressure 
as well as the resulting changes in permeability, compaction and level of saturation. 
Secondly, the aim is to track the resin flow front during the infusion process using the 
continuum formulation itself, thereby avoiding methods like level set, etc. [1]. In this 
contribution, we present a permeability model applied within the modeling framework to 
account for anisotropic flow in the fibre bed. The ultimate goal of the approach is to be able 
to simulate the infusion of high performance, large scale composite structures, in an 
optimized and controlled fashion. 
 
1 Introduction 
Darcy law is commonly used to model the resin flow in composite processing. This model 
describes the fluid flow in porous media and it typically relates the flow rate Q to the pressure 
difference over the specimen (∆𝑝 𝐿⁄ ) defined as  
 

𝑄 = 𝐾
𝐴
𝜇
∆𝑝
𝐿

, (1) 

 
where 𝜇 is the viscosity and 𝐾 the permeability. Since both the mechanical and the fluid flow 
properties (i.e. the permeability) of composites are to a large extent determined by fiber 
volume fraction, it is common to study the permeability variation with fiber volume fraction, 
as proposed by Carman [2]. However, in case of unidirectional reinforcement, where the 
transverse flow is much more constrained as compared to flow along the fibers, isotropic 
predictions of permeability are false. In this context, a permeability model of an idealized 
unidirectional reinforcement consisting of regularly ordered, parallel fibers was derived both 
for flow along and perpendicular to the fibers by Gebart [3]. In the present work we approach 
the problem similar to Gebart; however, here we consider the partially impregnated layers of 
prepregs, the so called EvaC pregpregs [4]. In such a prepreg the fiber bed is kept dry and the 
matrix cover both sides of the preform, as shown in Figure 2. Therefore, we assume that 
during the manufacturing processes two kinds of flow will develop; (i) the macroscopic flow 
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between the layers and (ii) the infiltration flow into the dry fiber bed. In summary, the flow is 
restricted perpendicular to the plies and fairly unrestricted parallel to the plies. 
 
The goal of this paper is to combine the theory of porous media with respect to the liquid 
resin infusion problem, as developed in [1], with the constitutive relation for anisotropic 
permeability introduced in following section.  
 
2 A homogenized theory of porous media 
The fiber bed during infusion is considered as a porous material with a fibre bed with pores 
that are either partially filled by liquid resin or contains unfilled void space. The macroscopic 
volume fractions for the solid and the fluid phases 𝑛𝑠 and 𝑛𝑓, respectively, are defined as 
 

  𝑛𝑠 =
𝑉𝑠

𝑉
, 𝑛𝑓 =

𝑉𝑓

𝑉
          with          𝑛𝑠 + 𝑛𝑓 = 1        (2) 

 
where 𝑉𝑠 is the volume portion of the solid relative to a representative volume with volume 
𝑉, and 𝑉𝑓 is the compressible fluid volume portion of the pore space. The volume fractions 
are connected via the saturation constraint [1]. 
 

 
Figure 1. Reference and spatial configurations representing infusion of fiber bed with partially saturated and 

unsaturated regions B and C, respectively. The free surface 𝛤0𝑙[𝑡] is migrating in the material and separates the 
regions 𝐵0 and 𝐶0. 

 
The fluid phase mixture may be further described upon introducing the degree of liquid 
saturation 0 ≤ 𝜉[𝑥, 𝑡] ≤ 1, where 𝜉 = 0 corresponds to gas-filled pores and 𝜉 = 1 
corresponds to the situation of complete liquid saturation. 
 
1.1 Governing equations 
To formulate the coupled problem of partially fluid saturated solid, mass balance and 
momentum balance is used 
 

𝜌𝑓𝛁 ∙ 𝒗 − 𝑛𝑓𝜌̇𝑓 = −𝛁 ∙ (𝜌𝑓𝒗𝑑), (3) 
 

𝝈 ∙ ∇ + 𝜌�𝒈 = 𝟎   ∀𝒙 ∈ 𝐵, (4) 
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where 𝒗𝑑 is the Darcian velocity defined as 𝒗𝑑 = 𝑛𝑓𝒗𝑟and 𝝈 = 𝝈𝑠 + 𝝈𝑓 is the total Cauchy 
stress. In turn, 𝝈� is related to the effective (constitutive) stress 𝝈 and the fluid pressure p via 
the Terzaghi effective stress principle as  𝝈� = 𝝈 − 𝑝𝟏. 
 
3 Constitutive equations 
It turns out that the total mechanical dissipation D may be interpreted in terms of a few 
independent phenomenological mechanisms of the mixture material. 
 

𝐷 = 𝝈: 𝒍 − 𝜓̇�����
𝐷𝑠

+ 𝑛𝑓𝑝
𝜌̇𝑓

𝜌𝑓
− 𝜌�𝑓𝜓̇𝑓

�����������
𝐷𝑛𝑣𝑓

+ 𝜉−1𝒗𝑑 ∙ (𝜌𝑓𝒈 − 𝛁𝑝�������
𝒉𝑒
𝑓

)
�������������

𝐷𝑖

≥ 0, 
(5) 

 
where the different terms 𝐷𝑠, 𝐷𝑛𝑣𝑓 and 𝐷𝑖 represent dissipation contributions due to solid 
deformation, fluid compressibility and Darcian interaction. In equation (5), 𝒉𝑒

𝑓 is the effective 
drag force and it may be noted that the effective stress felt by the continuum is represented by 
the Terzaghi stress 𝝈, p is the fluid pressure, 𝒍 is the spatial velocity gradient, 𝜌�𝒔 is the bulk 
density, 𝜓 is free energy and g is gravity.  
Guided by the dissipation inequality, we outline the constitutive relations of our two-phase 
continuum in respect to effective stress and Compressible liquid-gas response.  
 
3.1 Effective stress response 
Assuming hyper-elasticity for the effective stress response for a Neo-Hookean elastic material 
we obtain the free energy 𝜓 [𝑪] for the solid phase which correspond constitutive state 
equations as 
 

𝑺 = 2𝜌�0𝑠
𝜕𝜓
𝜕𝑪

, (6) 

 

𝑝 = (𝜌𝑓)2
𝜕𝜓𝑓

𝜕𝜖
, (7) 

 
where 𝑺 = 𝑺� – 𝐽𝑪−1𝑝 is the consequent effective second Piola Kirchhoff stress due to the 
Terzaghi effective stress principle. 
  
3.2 Compressible liquid-gas response 
In order to assess the pressure dependence in the fluid density, it is assumed that the same 
pressure prevails in the liquid and gas constituents and that the highly compressible gas 
constituent is pressure dependent in the spirit of the ideal gas law. It should be noted that the 
rate behavior of the fluid density may be characterized in terms of the compression modulus 
of the liquid-gas mixture. 
 

𝜌𝑓 = 𝜉𝜌𝑙 + (1 − 𝜉)𝜌𝑔 (8) 
 

𝜌̇𝑓 =
1
𝐾𝑓 𝑝̇ + (𝜌𝑙 − 𝜌𝑔)𝜉̇     𝑤𝑖𝑡ℎ 𝐾𝑓 =

1
(1 − 𝜉)𝑘𝑔

 (9) 
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Indeed, the value of 𝐾𝑓 increases for increased saturation and decreased gas-compliance 𝑘𝑔. 
For continued saturation towards 𝜉 = 1, we obtain that 𝐾𝑓 → ∞ and 𝜉 = 0 leading to fluid 
incompressibility, i.e. 𝜌𝑓 → 𝜌𝑙 . c.f. Larsson et. al. [1] for further details. 
 
3.3. Solid-fluid interaction 
A key feature of the present contribution is the solid-fluid interaction model, where it is 
assumed that two types of flow will develop during the composites processing; (i) the 
macroscopic flow between the layers and (ii) the infiltration flow into the dry fiber bed. In this 
context, the generic flow in porous media may be described using the Darcy law as 
 

𝒗𝑑 = −
1

𝜈(1 − 𝜙𝑝)𝑲 ∙ 𝒉𝑒
𝑓 , (10) 

where 𝑲 is the anisotropic permeability tensor and 𝜈 is liquid viscosity. To derive the 
permeability for the considered fibre bed, let us introduce the structural tensor 𝐌 = 𝐓⊗ 𝐓 
∈  B0 , where 𝐓 is a unit vector transverse to the fibre bed as shown in Figure 2. 

 

 
Figure 2. Flow channel and fiber bed stacks 

 
Projecting the total Darcian flow on to the director field 𝐓 and the plane perpendicular to 𝐓 
gives  
 

𝒗𝑑 = −
1

𝜈(1 − 𝜙𝑝) �𝐾𝑡
(𝟏 −𝑴) + 𝐾𝑓𝐵𝑴� ⋅ 𝒉𝑒

𝑓 , (11) 

 
where 𝐾𝒇𝑩 is the permeability in the T-direction and 𝐾𝑡 is the permeability perpendicular to 
T. Following the development in [5], the permeability 𝐾𝑡 may be represented as the linear 
mixture rule 𝐾𝑡 = 𝐾𝑓𝐵(1− 𝜙𝑙) + 𝐾𝐶ℎ𝜙𝑙, leading to 
 

𝒗𝑑 = −
1

𝜈(1 − 𝜙𝑝) ��𝐾𝑓𝐵
(1 −𝜙𝑙) + 𝐾𝐶ℎ𝜙𝑙�(𝟏 −𝑴) + 𝐾𝑓𝐵𝑴� ⋅ 𝒉𝑒

𝑓 , (12) 

 
where 𝐾𝑓𝐵 is the permeability through the fiber, 𝐾𝐶ℎ is the permeability through the channel 
and 𝜙𝑙 is liquid volume fraction. 
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Figure 3. Distance between fiber layers and flow channel 

 
The permeability through the fiber bed 𝐾𝑓𝐵 is represented using the Gebart equation as in 
(12). The permeability through the channel may be approximated considering the resistance to 
viscous flow within a rectangular channel, [5] 
 

𝐾𝑓𝐵 =
16𝑟2

9𝜋√2
��

𝜋

2 �𝜙0𝐽 �√3
− 1�

5
2

, 
(13) 

 

 

𝐾𝐶ℎ =
(ℎ𝑓)2

12
, (14) 

 
where ℎ𝑓 is the channel height and it is a function of the continuum stretch parallel to T 
defined as  
 

ℎ𝑓 = 𝐻(𝜆∥) − ℎ0𝑠 →  {𝐻(𝜆∥) = 𝐻0𝜆∥}  →  ℎ𝑓 = 𝐻0𝜆∥ − ℎ0𝑠 , (15) 
 
where 𝜆∥ is the stretch in the direction of T given as 
 

𝜆∥ = √𝑪:𝑴, (16) 
 
and 𝑪 is the right Cauchy-Green deformation tensor, ℎ0𝑠  is the fiber ply thickness (assumed 
constant at the moment) and 𝐻0 = ℎ0𝑠 + ℎ0

𝑓. In consequence, the channel permeability reads 
 

𝐾𝐶ℎ =
(𝐻0𝜆∥ − ℎ0𝑠)2

12
. (17) 

 
When the preform deforms, the size of the channel decreases, meaning that 𝜙𝑙  & ℎ 

𝑓 → 0, 
which in that case 𝐾𝐶ℎ vanishes. 
 
3.4 A smooth free surface problem 
In order to formulate the governing equations of the two different continua, one may generally 
distinguish one fluid saturated portion 𝐵0 → 𝐵0[𝑡] and one non-saturated one-phase portion 
𝐶0 → 𝐶0[𝑡] separated by the free surface boundary Γ𝐼[𝑡], as shown in Figure 1. However, the 
key idea of paper is to consider the motion Γ𝐼[𝑡] in terms of the evolution of the fluid 
saturation field 𝜉 = 𝜉[𝒙, 𝑡]. Clearly, at the initiation of a wetting process the initial condition 
is that 𝜉[𝒙, 𝑡] = 0 in order to define the one phase non-wet region, whereas the fully saturated 
region is defined by 𝜉[𝒙, 𝑡] = 1. We thereby replace the strictly discontinuous free surface 
problem by a smooth transition of the liquid front in terms of the evolution of the fluid 
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saturation field 𝜉̇ = 𝜉̇[𝒙, 𝑡]. We can recall the saturation evolution [1] along with the Darcian 
flow model which is to be satisfied locally according to 
 

𝑛𝑓𝜉̇ +
𝐽̇
𝐽
𝜉 + 𝛁 ∙ 𝒗𝑑 = 0 (18) 

 
whereby the saturation degree variable may be regarded as a local field variable 𝜉 = 𝜉[𝒙, 𝑡] 
or, simply, as an internal variable governed by equation (18). 
 
4 Total solution procedures 
The planar infusion problem shown in Figure 4 is considered for numerical simulation. The 
applied pressure load due to the vacuum infusion is prescribed along all the external 
boundaries, except at the impermeable lower boundary in Figure 4. The solid deformation is 
also controlled via prescribed displacement along the lower, impermeable boundary in the 
figure. The wetting process is driven by the Darcian solid-fluid interaction force as induced by 
pressure gradient. This process is manifested by a migrating resin flow front represented by 
the saturation degree evolution with time in the porous fiber bed.  
 

 
Figure 4. Liquid resin infusion of fiber bed principle for specimen subjected to vacuum induced pressure load 

 
The material parameters used in the numerical simulation are the same as what has been used 
in [1]. 
 
5 Numerical results and concluding remarks 
A simulation of liquid resin infusion, as defined in Figure 4, with a flexible fiber bed based on 
hyper elastic material model is considered using the same boundary conditions and material 
parameter as in Larsson et. al. [1]. The goal is to assess the permeability model developed in 
this paper invoked to the infusion simulation algorithm. 
As to the assessment of the global saturation degree for the numerical solution, we simply 
consider 𝜉 as the average value of the saturation degree in the elements, i.e. 𝜉 =< 𝜉 >.  
 
In Figure 5, the deformation of the preform is shown along with the distribution of 𝜉. A non-
uniform compaction of the preform is induced by the vacuum pressure and so is the temporal 
evolution of the diffusive flow front. During the infusion, as the fluid pressure increases, some 
of the deformation will be balanced off, leading to a difference in deformation in the saturated 
and in the non-saturated regions. Preform deformation has a direct influence on the 
permeability, porosity and the Darcian liquid flow advancement. Figure 6 shows the resulting 
fluid pressure distribution, which is the key mechanism driving the resin infusion via the 
anisotropic permeability. As time passes, the Darcian velocity decreases due to the decrease in 
the pressure gradient, and the process is significantly slowed down, as shown in Figure 7. The 
convergence of the solution upon mesh refinements is also shown in Figure 7 and it can be 
noted that the total infusion time is around 𝑇 ≈ 60 minutes. 
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Figure 5. Preform deformation during infusion process along with current state of saturation 

 

 
Figure 6. Preform deformation during infusion process along with fluid pressure distribution
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In the present paper we have framed the liquid resin infusion of composites (and other related 
processes) into a free surface formulation based on two-phase porous media theory while the 
driving flow is modeled by Darcy law with an anisotropic permeability model. As compared 
to other methods available in the literature for these types of problems, typically restricted to 
simplified 1D approximations with isotropic assumption for the flow, the approach is quite 
general in the sense that it provides the coupling between the preform deformation and the 
free surface migration in one and the same formulation considering flow properties different 
in different directions.  
 

 
Figure 7. Global saturation degree versus time, mesh sensitivity analysis 
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