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Abstract. 
 
This research aims to develop a numerical tool which allows an integral design approach of 
generic shells of revolution intended for very high internal pressure applications, fabricated 
with the filament winding process. In order to define a generic winding model as a function of 
the winding angle, the stability conditions are stated for a generic case, and two axisymmetric 
geometries of revolution for the mandrel are proposed to validate the mathematical 
procedure: a convex and a concave geometry. Both shapes are described mathematically, so 
that the geodesic and the non-geodesic trajectories are defined and solved numerically. 
Experimental validation would be achieved by fabricating both geometries with a lathe type 
winder with five degrees of freedom. Wound shapes would be submitted to validation tests in 
order to control and to verify the correct placement of the roving. As a result the 
mathematical description of the filament winding process is achieved for two axysimmetric 
rotationally symmetric shapes. 
 
 
1. Introduction 
 
The development of hydrogen as an energy vector is related with renewable energy sources, 
such as hydraulic, sun or wind energy. Because of their intermittent nature, these energies 
must be stored so they can be used lately on demand. The energy that is not used immediately 
can be transformed to hydrogen by means of an electrolyser when considering renewable 
energy sources, or by the chemical reaction of the syngaz during the gasification process of 
the biomass. Producing hydrogen this way is one of the most efficient manners to store this 
kind of energy, allowing a subsequent use, with good performance [1]. 
 
The discharge pressures of the devices that transform the surplus energy to hydrogen go from 
atmospheric pressure up to 30 bars. In order to obtain reasonable storage volumes, hydrogen 
must be compressed, but compression itself is a process that consumes energy and that 
becomes less effective as the behavior of the gas differs to that of a perfect gas. So it is more 
effective and economic to store hydrogen directly from the device and to compress it up to 
100 bars. This value is a compromise between the stored volume gain, and the consumed 
energy used for compression [1]. 
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This project aims to continue the development of highly reliable storage tanks reinforced with 
composite materials, like for example type IV tanks for compressed hydrogen at 700 bar. 
Illustrated in figure 1, these composite tanks are fabricated using the filament winding process 
of carbon fiber over a polymer (thermoplastic) liner.  
 

 
Figure 1. Type IV hydrogen storage tanks. Courtesy of MAHYTEC SARL. 

 
Filament winding is a process in which continuous tows of strands are wound on a supporting 
form or mandrel [2]. Its best use is for making tube- and pipe-shaped objects. Since its 
introduction in the 60’s, filament winding process has been used to develop filament-
reinforced metal pressure vessels (type II and type III tanks), and metal-lined (type III) or 
plastic-lined (type IV) filament-wound pressure vessels (the latter consists of a very thin liner 
having minimum thickness required for impermeability and fabrication). Filament-wound 
structures are made using the polar, helical or hoop winding patterns. Polar winding is used to 
lay down fiber close to 0° with respect to the rotating axis, so roving generally passes close to 
or around the mandrel poles. Helical winding is used to deposit fiber at angles from 5° to 80° 
to the longitudinal axis. Hoop winding is used to lay down fiber close to 90° to the 
longitudinal axis.  
 
The performance of type IV tanks depends on the materials used both for the liner and the 
reinforcement; on the failure and damage behavior under static, creep, or fatigue; and on the 
parameters comprised during the fabrication, such as the winding angles [3], the trajectories 
of the fiber [3, 4, 5], the tow tension [6], the winding speed [7], or the winding patterns [8, 9]. 
According to [3], geometry definition of a filament wound structure is one the aspects that has 
not been sufficiently treated using mathematical description. The theories supporting the 
complete manufacturing process are covered in the literature [2-10]; nevertheless there is still 
a lack of mathematical description methods from the design point of view. The scope of this 
article is to present the mathematical background that allows the definition of a generic 
winding model. In order to achieve this goal, a convex and a concave shell of revolution for 
the mandrel are studied in an effort to propose more complex shapes, rather than traditional 
cylinders, or semi-spheres. Both shapes are described mathematically, so that the geodesic 
and the non-geodesic trajectories can be defined and solved by means of numerical computing 
software. 
 
Recent literature that has treated the mathematical definition of trajectories over a surface 
include: [3], as the study of the filament winding process itself; [5], as the study of 
overwrapped pressure vessels for hydrogen storage (type III) using aluminum liners; and [10], 
as the analysis of the elasto-plastic damageable behavior of composite laminates using 
filament wound pipes as test specimens. 
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2. Methodology 
2.1 Geometrical description of mandrel 
 
The chosen mathematical procedure requires that both the surface and the curve to be placed 
over it, to be derivable, in order to calculate their geometrical parameters [11, 12]. From this 
statement the surface S is continuous and regular, defined as a function of the meridian (θ ) 
and parallel (ϕ ) coordinates. For an axisymmetric mandrel, S is described according to the 
following equation expressed in spherical coordinates: 
 

{ })cos()(),sin()sin()(),cos()sin()(),( θθρϕθθρϕθθρθϕ == SS    (1) 
 
On the other hand, the curve C to be traced over the surface is regular, continuous, of class 
C2, and it is expressed as a function either of the arc length s (2), or of the independent 
parameters generating it (3): 
 

))(),(()( sss θϕCC =            (2) 
 

( )( ) ( )( ) ( )( ){ }θϕθθϕθθϕθθ ,,,,,)( zyxCC =        (3) 
 
The curve C has an orientation α with respect to the meridian of the surface, which means 
that the normal curvature will obtain two extreme values, i.e. the meridian km and parallel kp 
curvatures when considering a shell of revolution. Normal curvature of C, expressed as a 
function of the orientation angle and the referred maximum and minimum principal 
curvatures is stated by (4):  
 

αα 22 sincos pmn kkk +=         (4) 

 
Two axisymmetric geometries of revolution for the mandrel, whose contours are illustrated in 
figure 2, are proposed: a convex and a concave geometry with the origin of their radius traced 
at point m. The fulfillment of the complete procedure on these geometries should allow us to 
validate the mathematical approach. 
 

 
Figure 2. Convex-shaped mandrel and concave-shaped mandrel. 

 
The discretized definition of the mandrel is given by equations (5) through (7): (5) for the 
cylinder, (6) for the convex shape, and (7) for concave geometry. 
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( )kk R θρ sin/=          (5) 

 

( ) ( )kkk RRRL θθρ sinsin3 2222
1 −++=        (6) 

 

( ) ( )kkk RRRL θθρ sin3cos94 2222

1
+−+=        (7) 

 
Where ρk is the function parameter that defines the geometry in spherical coordinates 
(meridian angle, θk) with the origin of the spherical frame at point O (figure 2); R is the radius 
of the cylinder; and L1 is the half-length either of the convex or concave shape. 
 
2.2 Stability conditions of fiber placement. 
 
The correct establishment of the stability condition of the fiber over the surface of the mandrel 
is a key to obtain the differential equation that defines the convenient curves over its surface. 
The stability of a trajectory depends of the relation between the lateral force, due to the 
change of the fiber angle α (or due to the shape of the mandrel); and the normal force, which 
depends on the longitudinal force F along the fiber. In the free-body diagram illustrated in 
figure 3, an orthonormal frame with origin at P is formed by the tangent t, normal n, and 
binormal b vectors.  
 

 
      Figure 3. Forces developed along the fiber path [10]. 

 
It is assumed that the friction coefficient on the mandrel is µ and that µ* is the real number 
parameter whose values belong to the interval [-µ, µ]. According to the friction theory, no 
slipping of the fiber occurs if the value of the lateral force fb is lower than the product of the 
normal force nf  multiplied by the friction coefficient. This condition is defined by (8). As a 

direct consequence, and under the assumption of a local analysis, the previous relationship 
allows the description of a stable trajectory over the mandrel: 
 

n

b

f

f
≥µ           (8) 
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2.3 Mathematical procedure. 
 
The chosen approach is based on the evaluation of the stability condition (9) considering the 
normal curvature as a function of the meridian and parallel curvatures, and on the solution of 
an ordinary differential equation (ODE) that describes the winding angle distribution. When 
the value of the normal curvature is zero, the geodesic curvature definition allows the 
integration of the Clairaut relation, as well as the evaluation of geodesic trajectories. The 
meridian and parallel curvatures are obtained as a function of geometrical parameters of the 
surface that are independent of the coordinate system, i.e. they are expressed as a function of 
E and G, that are the coefficients of the first fundamental form; and e and g that are the 
coefficients of the second fundamental form: 
 

Ggkm /= ; Eekp /=          (10) 

 
Where: 
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For a shell of revolution expressed in spherical coordinates, the said coefficients of the first 
fundamental become: 
 

θρ 22 sinkE = ; ( )22 'kkG ρρ +=        (13) 

 
In consequence, the meridian and parallel curvatures can be expressed, respectively by: 
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The ODE that defines the non-geodesic trajectories is obtained when evaluating (9) with (14) 
at (4), i.e. principal curvatures are replaced by the meridian and parallel ones: 
 

( )








+±−= αα

α
µαθ

θ
α 22 cossin

cos
tan

/
2
1

mp kk
G

E

ddE

d

d
    (15) 

 
Differential equations that define the parametric coupling of θ and ϕ, and the length of the 
trajectory are expressed with (16) and (17), respectively: 
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2.4 Numerical resolution.  
 
Considering its accuracy and stability, equation (15) is solved by the modified Euler Method, 
which is derived by applying the trapezoidal rule to the solution of ),(' yxfy = [13]: 
 

( )( ) 2/),(, 111 nnnnnn xyfxyfhyy ++= +++       (14) 

 
Where h is the step size, x is the independent coordinate, and y the dependent coordinate. 
Initial condition is α(0) ≈ π/2, i.e. fiber is placed lightly perpendicular to the generatrix lines 
at the beginning of the cylindrical part of the mandrel. Numerical differentiation of (5) 
through (7) as stated by (13) is achieved by the centered finite-difference method [14]. On the 
other side, numerical integration of (16) and (17) is made using the trapezoidal rule.  
 
 ( ) hxfxfxfxfxf iiiii 12/)()(8)(8)()(' 2112 −−++ +−+−=      (15) 

 
( ) 2

2112 12/)()(16)(30)(16)()('' hxfxfxfxfxfxf iiiiii −−++ −+−+−=    (16) 

 
The numerical resolution of (15) is compared and validated with the respective analytical 
solution of the cylindrical part. In figure 4 the cylindrical mandrel geometry is depicted, as 
well as the distribution of α according to θ, ϕ according to the length of the mandrel z, and 
the length of the trajectory with respect to z. The same information is given for the convex- 
(figure 5), and the concave-shaped mandrels (figure 6). 
 

 
      Figure 4. Numerical solution of the winding angle distribution for the cylindrical geometry. 
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      Figure 5. Numerical solution of the winding angle distribution for the convex geometry. 

 

 
      Figure 6. Numerical solution of the winding angle distribution for the concave geometry. 

 
 
3. Conclusions 
 
The present paper paid attention on the description of the required methodology to ensure the 
overwrapping of a non-cylindrical mandrel by the filament winding manufacturing process. 
The mathematical background allowed the authors to establish the differential equation which 
permitted to obtain steady trajectories of the fiber over the surface of a mandrel with a 
complex geometry. Further analysis will let us to trace trajectories on the surface of the 
convex and concave mandrels already fabricated.  
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