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Abstract.

This research aims to develop a numerical tool whiltows an integral design approach of
generic shells of revolution intended for very higternal pressure applications, fabricated
with the filament winding process. In order to defa generic winding model as a function of
the winding angle, the stability conditions aretsthfor a generic case, and two axisymmetric
geometries of revolution for the mandrel are praabsto validate the mathematical
procedure: a convex and a concave geometry. Bapeshare described mathematically, so
that the geodesic and the non-geodesic trajectoaies defined and solved numerically.
Experimental validation would be achieved by fadiltg both geometries with a lathe type
winder with five degrees of freedom. Wound shapmeddibe submitted to validation tests in
order to control and to verify the correct placermesf the roving. As a result the
mathematical description of the filament windinggess is achieved for two axysimmetric
rotationally symmetric shapes.

1. Introduction

The development of hydrogen as an energy vectalased with renewable energy sources,
such as hydraulic, sun or wind energy. Becauséhaf intermittent nature, these energies
must be stored so they can be used lately on dertledenergy that is not used immediately
can be transformed to hydrogen by means of anrelgsér when considering renewable
energy sources, or by the chemical reaction ofsiimyaz during the gasification process of
the biomass. Producing hydrogen this way is onth@fmost efficient manners to store this
kind of energy, allowing a subsequent use, withdgyoerformance [1].

The discharge pressures of the devices that tnandfee surplus energy to hydrogen go from
atmospheric pressure up to 30 bars. In order taimlbeasonable storage volumes, hydrogen
must be compressed, but compression itself is aepsthat consumes energy and that
becomes less effective as the behavior of the ffessdto that of a perfect gas. So it is more
effective and economic to store hydrogen direathyrf the device and to compress it up to
100 bars. This value is a compromise between thedtvolume gain, and the consumed
energy used for compression [1].
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This project aims to continue the development ghlyi reliable storage tanks reinforced with
composite materials, like for example type IV tarits compressed hydrogen at 700 bar.
lllustrated in figure 1, these composite tanksfaleicated using the filament winding process
of carbon fiber over a polymer (thermoplastic) fine

Figure 1. Type IV hydrogen storage tanks. Courtesy of MAHYCTEARL.

Filament winding is a process in which continucmsd of strands are wound on a supporting
form or mandrel [2]. Its best use is for making @utand pipe-shaped objects. Since its
introduction in the 60’s, filament winding procebas been used to develop filament-
reinforced metal pressure vessels (type Il and tYipanks), and metal-lined (type IlI) or
plastic-lined (type 1V) filament-wound pressure se&s (the latter consists of a very thin liner
having minimum thickness required for impermeapilnd fabrication). Filament-wound
structures are made using the polar, helical opiwiading patterns. Polar winding is used to
lay down fiber close to 0° with respect to the tiogaxis, so roving generally passes close to
or around the mandrel poles. Helical winding isdusedeposit fiber at angles from 5° to 80°
to the longitudinal axis. Hoop winding is used ®y ldown fiber close to 90° to the
longitudinal axis.

The performance of type IV tanks depends on thesnadé used both for the liner and the
reinforcement; on the failure and damage behaunoleu static, creep, or fatigue; and on the
parameters comprised during the fabrication, sictha winding angles [3], the trajectories
of the fiber [3, 4, 5], the tow tension [6], thending speed [7], or the winding patterns [8, 9].
According to [3], geometry definition of a filamewbund structure is one the aspects that has
not been sufficiently treated using mathematicacdption. The theories supporting the
complete manufacturing process are covered initirature [2-10]; nevertheless there is still
a lack of mathematical description methods fromdbsign point of view. The scope of this
article is to present the mathematical backgrourat allows the definition of a generic
winding model. In order to achieve this goal, avenand a concave shell of revolution for
the mandrel are studied in an effort to proposeentmmplex shapes, rather than traditional
cylinders, or semi-spheres. Both shapes are descrtathematically, so that the geodesic
and the non-geodesic trajectories can be definddalved by means of numerical computing
software.

Recent literature that has treated the mathemadiefwhition of trajectories over a surface
include: [3], as the study of the filament windipgocess itself; [5], as the study of
overwrapped pressure vessels for hydrogen stotgge 1) using aluminum liners; and [10],
as the analysis of the elasto-plastic damageabtavioe of composite laminates using
filament wound pipes as test specimens.
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2. Methodology
2.1 Geometrical description of mandrel

The chosen mathematical procedure requires thatthetsurface and the curve to be placed
over it, to be derivable, in order to calculateittlygometrical parameters [11, 12]. From this
statement the surfac®is continuous and regular, defined as a functibthe meridian @)
and parallel ¢ ) coordinates. For an axisymmetric mandg&ls described according to the
following equation expressed in spherical coordiaat

S=5(¢,0) ={p(6)sin(6) cosp), p(8) sin(6) sin(@), p(6) cosE)} (1)

On the other hand, the cur@to be traced over the surface is regular, contispyof class
C? and it is expressed as a function either of tteelengths (2), or of the independent
parameters generating it (3):

C(s) = C(#(9),6(9)) 2)
C(6) =C{x(6.4(0)). y(6.4(6)). 2(6.2(6))} (3)

The curveC has an orientatiomr with respect to the meridian of the surface, wmobans
that the normal curvature will obtain two extrenadues, i.e. the meridiaki, and parallek;
curvatures when considering a shell of revolutibNlermal curvature ofC, expressed as a
function of the orientation angle and the referne@ximum and minimum principal
curvatures is stated by (4):

k, =k,cos a+k sin’a (4)

Two axisymmetric geometries of revolution for thamdrel, whose contours are illustrated in
figure 2, are proposed: a convex and a concave gepnvith the origin of their radius traced
at pointm. The fulfillment of the complete procedure on tggeometries should allow us to
validate the mathematical approach.

j 2R+h

Figure 2. Convex-shaped mandrel and concave-shaped mandrel.

The discretized definition of the mandrel is givey equations (5) through (7): (5) for the
cylinder, (6) for the convex shape, and (7) foraare geometry.
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o, =R/sin(g,) (5)
. =+/L2 +3R? + R?sin?(d,) - Rsin(4,) (6)
P, =2 +4R* -9R? cog (8, ) +3Rsin(4, ) @

Where p« is the function parameter that defines the geometr spherical coordinates
(meridian angled,) with the origin of the spherical frame at poin{f@ure 2);R is the radius
of the cylinder; andl; is the half-length either of the convex or concslape.

2.2 Stability conditions of fiber placement.

The correct establishment of the stability conditad the fiber over the surface of the mandrel
is a key to obtain the differential equation thaties the convenient curves over its surface.
The stability of a trajectory depends of the relatbetween the lateral force, due to the
change of the fiber angle (or due to the shape of the mandrel); and the abfonce, which
depends on the longitudinal foréealong the fiber. In the free-body diagram illustdhin
figure 3, an orthonormal frame with origin at Pfesmed by the tangertt normaln, and
binormalb vectors.

F<\

F
Figure 3. Forces developed along the fiber path [10].

It is assumed that the friction coefficient on thandrel isy and thatw* is the real number
parameter whose values belong to the interval /4. According to the friction theory, no
slipping of the fiber occurs if the value of theéelal forcefy, is lower than the product of the
normal forcef, multiplied by the friction coefficient. This conaht is defined by (8). As a
direct consequence, and under the assumption ofa analysis, the previous relationship
allows the description of a stable trajectory aber mandrel:

[
Uz m 8
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2.3 Mathematical procedure.

The chosen approach is based on the evaluatidmeddtability condition (9) considering the
normal curvature as a function of the meridian padillel curvatures, and on the solution of
an ordinary differential equation (ODE) that delses the winding angle distribution. When
the value of the normal curvature is zero, the gemmd curvature definition allows the
integration of the Clairaut relation, as well ag #wvaluation of geodesic trajectories. The
meridian and parallel curvatures are obtained ametion of geometrical parameters of the
surface that are independent of the coordinatesyste. they are expressed as a function of
E and G, that are the coefficients of the first fundameérfitam; ande andg that are the
coefficients of the second fundamental form:

k,=9/G; k,=elE (20)
Where:
:_S gd_ _ds (11)
dg d¢ dé dH
ds  dS dS_dS

_d (dsj 6" dg g= (dsj 46" dg (12)
gl dg ds_ds de\dg) Jds_ ds
dg dg 46" dg

For a shell of revolution expressed in sphericalrdmates, the said coefficients of the first
fundamental become:

E=psin’6; G=p+(p,)f (13)

In consequence, the meridian and parallel curvatcae be expressed, respectively by:

k = 2(:0k')2 _:0|<:0|<“"':0k2 k = P Sin(‘gk)_pklcos(gk) (14)

" ) " asin@ e+ (o)

The ODE that defines the non-geodesic trajectasiebtained when evaluating (9) with (14)
at (4), i.e. principal curvatures are replacedhgymeridian and parallel ones:

JG

cosa

da __1dE/d8
6~ 2 E

tana + ,u( (kp sin’ a +k_ cos a)) (15)

Differential equations that define the parametoaming of & and ¢, and the length of the
trajectory are expressed with (16) and (17), regedy:
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dg - |S tana (16)
dé E
dé cosa

2.4 Numerical resolution.

Considering its accuracy and stability, equatidp) ( solved by the modified Euler Method,
which is derived by applying the trapezoidal rddhe solution ofy'= f(x,y [13]:

Yo = Yo FN(F (Vs %) + T (¥ %)) 72 (14)

Whereh is the step sizex is the independent coordinate, anthe dependent coordinate.
Initial condition isa(0) = 172, i.e. fiber is placed lightly perpendicular teetgeneratrix lines
at the beginning of the cylindrical part of the rdesl. Numerical differentiation of (5)
through (7) as stated by (13) is achieved by tmeced finite-difference method [14]. On the
other side, numerical integration of (16) and (k7#nhade using the trapezoidal rule.

£10%) = (= (%) +8F (x.1) =8 (%) + T (x,)) /12h (15)

f(%) = (= f (X,,) +16f (x.,) —30f (%) +16f (x_) — f (X_,)) /12h* (16)

The numerical resolution of (15) is compared antidated with the respective analytical

solution of the cylindrical part. In figure 4 thglindrical mandrel geometry is depicted, as
well as the distribution ofr according tod, ¢ according to the length of the mandrel z, and
the length of the trajectory with respect to z. BHaene information is given for the convex-
(figure 5), and the concave-shaped mandrels (fiGure
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Figure 4. Numerical solution of the winding angle distrilmrtifor the cylindrical geometry.
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Figure 5. Numerical solution of the winding angle distrilout for the convex geometry.
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Figure 6. Numerical solution of the winding angle distrilmrtifor the concave geometry.

3. Conclusions

The present paper paid attention on the descrigtighe required methodology to ensure the
overwrapping of a non-cylindrical mandrel by thiafient winding manufacturing process.
The mathematical background allowed the authoestablish the differential equation which
permitted to obtain steady trajectories of the rfibger the surface of a mandrel with a
complex geometry. Further analysis will let us tace trajectories on the surface of the
convex and concave mandrels already fabricated.
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