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Abstract  

A mechanical model capable to predict the local buckling of pultruded FRP thin-walled 

beams and columns, taking into account the shear deformability of composite materials, is 

presented in this paper. The model is based on the individual analysis of buckling of the 

components of FRP profile, assumed as elastically restrained transversely isotropic plates. 

The analysis is developed within the field of small strains and moderate rotations. 
 
 

1 Introduction  

The use of pultruded Fiber Reinforced Polymers (FRP) thin walled beams represents an 

interesting challenge in the field of Civil Engineering, in view of the advantages that 

composite materials exhibit in comparison with conventional ones. 

The mechanical behavior of these structural elements is strongly influenced by buckling 

phenomena [1-3], due to their thin-walled sectional geometry and the low shear stiffness of 

composite materials. In fact, several studies have shown that shear deformation can 

significantly affect the ultimate failure of thin-walled FRP members [4-7]. With reference to 

local buckling, in agreement with Italian guidelines for designing structures entirely made of 

composite materials [8], the analysis of thin walled FRP shapes can be accomplished by 

modeling individually the profile plate components (i.e. flanges and web in the case of open 

section), under the assumption of flexible plate junctions (i.e. flange-web junctions in the case 

of open section) [9-11].  

This work presents a mechanical model able to predict the local buckling of pultruded FRP 

thin-walled beams and columns, taking into account the shear deformability of composites. 

With the aim of performing a buckling analysis of the single component of FRP profile, 

assumed as elastically restrained plates, Mindlin-Reissner theory is developed in the field of 

small strains and moderate rotations and is extended to elastic transversely isotropic materials. 

The numerical analysis here presented, performed on the basis of a weak formulation of the 

buckling problem within finite element method, examines the case of an ‘‘I’’ simply 

supported beam subject to transverse loads. 

 

2 Kinematics 

Let consider an “I” beam with the constant cross-section of Figure 1. The adopted Cartesian 

reference frame has the origin in the centroid, G, of one of the bases of the beam, being the X 

and Y axes coincident with the central axes of inertia of the cross-section and the Z axis 

coincident with the longitudinal beam axis. 
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The cross-section can be divided into five plate components, internally connected through 

flexible flange-web junctions (Figure 1). 
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Figure 1. Schematic representation of the pultruded profile cross section. 

 

Then, the single plate can be modeled as an elastically restrained transversely isotropic one. 

Let us denote the undeformed mid-plane of the plate with the symbol 0 . The total domain of 

the plate is 0 ( / 2, / 2)h h    . The boundary of the total domain consists of surfaces 

( / 2)S z h   , ( / 2)S z h    and 0 ( / 2, / 2)h h       (Figure 2).   is a curved 

surface, with outwards normal ˆ ˆ ˆ
x y yn n 

x
n e e , where xn  and yn  are the direction cosines of 

the unit normal. 

The classical theory available for shear deformable plates, due to Mindlin and Reissner [12]-

[13], is based on the following assumptions: a) straight lines perpendicular to the mid-plane 

(i.e. transverse normals) before deformation remain straight after deformations; b) the 

transverse normals do not experience elongation. 
 

x
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Figure 2. a) Global  , , ,O x y z  and local  , , ,M m n z  coordinate system of the plate;  

b) undeformed and deformed geometry of the shear deformable plate. 

 

Therefore, the displacement field of the plate, referred to the reference system  , , ,O x y z  

(Figure 2), can be written in the following form: 
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0( , , ) ( , ) ( , )yu u x y z u x y x y z    , (1a) 

0( , , ) ( , ) ( , )xv v x y z v x y x y z    , (1b) 

0( , ) ( , )w w x y w x y  , (1c) 

 

where 
0 0 0( , , )u v w  denote the displacements of a material point at the mid-plane of the plate  

and ( , )x y   are the rotations of transverse normals about the x -axis and y -axis, 

respectively. 

According to the hypothesis of small strains accompanied by moderate rotation and assuming 

that xy
 
infinitesimal rotation tensor component is negligible, it is easy to show that the 

column vector, Ε , associated with Green–Saint Venant strain tensor assume the following 

expression:  

 
(1) (2) (1 ) (1 ) (2)c lz    E ε ε ε ε ε ,

 

(2a) 
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, (2b) 

 

being (1 )c
ε  the first order constant strain vectors, (1 )lz ε  the first order linear strain vector and 

(2)
ε the second order strain vector. 

 

3 Buckling Analysis 

In order to analyze buckling behavior of shear deformable elastic plates, the following 

displacement field, responsible for the transition from fundamental configuration to varied 

one, is considered: 

 

( , , ) ( , )yu x y z x y z    , (3a) 

( , , ) ( , )xv x y z x y z    , (3b) 

0( , ) ( , )w x y w x y   . (3c) 

 

Thus, for small strains and moderate rotations, the strain-displacement relations take the form: 

 
(1) (2) (1 ) (1 ) (2)c lz        E ε ε ε ε ε .

 

(4) 

 

The fundamental configuration and the corresponding total potential energy are indicated by 
0
C  and 0

E , respectively, whereas the symbols *
C  and *

E  indicate the varied configuration and 

the corresponding total potential energy, respectively. 

The equilibrium conditions in the configurations 0
C  and *

C  can be expressed in a variational 

form by equating to zero the first variations of the corresponding total potential energy 
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functionals 0
E  and *

E . Starting from these conditions, the following equation can be 

obtained: 

 

 * 0 0    E E E . (5) 

 

The hypothesis of small strains, available in the fundamental configuration, allows to express 

Eq. (5) in the form: 
 

 *

2 2 0U V V    . (6) 

 

The term U
 
is the elastic energy corresponding to the transition 0

C  to *
C  and the terms 

2V  

and *

2V  are, respectively, the second-order work carried out by the external forces and by the 

stresses acting in the fundamental configuration, when the plate configuration changes from 
0
C  to *

C  [14]. 

On the basis of the results previously obtained, the expression of the elastic energy for a plate 

with rotational restraints along the sides parallel to x axis can be written as: 

 

   
/2/2 2 2
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 

 

  

 
        

 
    (7) 

 

In Eq. (7) k  and k  represent the rotational spring stiffnesses (Figure 3) and there are:  
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(8) 

 

being Ex, Ey, xy , Gxy, Gyz the independent elastic parameters, x  and y the shear factors in x 

and y direction, respectively. 

Since the applied loads do not work for the second order displacement responsible for the 

transition from configuration 0C  to  *C , the second-order work carried out by external forces,
 

2V , is zero. 

The second-order work,
 

*

2V , carried out by stresses in the fundamental equilibrium 

configuration can be written as follows: 
 

/2

* 0 (2)

2

/2

 .

h

i i

h

V dz d  


 

     (9) 

 

In Eq. (9)   is a constant by which the external loads must be multiplied to cause buckling, 

 0 0 0
T

x y xyN N N0

 

is the column vector associated with the Piola-Kirchhoff tensor 

(where 
0 0 0

x y xyN N N  are the normal forces per unit length in the fundamental equilibrium 

configuration). 
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4 Finite element discretization 

In order to apply the finite element method the mid-plane of the plate is subdivided in 

rectangular elements (Figure 3). 

 

x

 
Figure 3. Discretization of the domain. 

 

Assuming a quadratic 9-node Lagrange finite element, the above introduced displacements 

are independently interpolated as follows: 
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where ( , )i    are the nine lagrangian quadratic shape functions [15]; ( )

0

e

iw , ( )e

xi and ( )e

yi
 represent the displacement components of the i-th node of the e-th finite element. 

Starting from the FEM approach, the proposed model has been validated by comparing the 

theoretical prediction of buckling of an elastically restrained isotropic plate with the results 

reported in [16]. 

 

5 The case of a simply supported beam subject to a transverse load 

Let us consider an ‘‘I’’ beam with torsional restrains at the ends and subject to a uniformly 

distributed transverse load, applied to its upper flange, as shown in Figure 4.  
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Figure 4. Load condition. 
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The normal forces per unit length, in the fundamental equilibrium configuration, are given by 

the following relationships, for the web: 

 

 2

0

2
x w

x

l x x y
N q t

I

 
 ; 

3
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3

1 3
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2 2
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and the flange: 
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I
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. (12) 

 

In the previous equations fS  is the static moment of the flange about the X axis and Ix is the 

moment of inertia about X axis of the beam cross-section.  

The boundary conditions for the web and the half flange are reported in Table 1. 

 

Web Half Flange 

( , / 2) ( / 2, ) 0
0 0

w x y L w x L yy x         ( , / 2) ( / 2, ) 0
0 0

w x y L w x L yy x         

( / 2, ) 0x L yx x     ( / 2, ) 0x L yx x     

( , / 2) 0x y Ly y   
 

( , / 2) 0x y Ly y     

0k k
 
 

 
 0k k

 
   

Table 1. Boundary conditions. 

 

A parametric study is performed in order to investigate the buckling behavior of some 

pultruded GFRP (Glass Fiber Reinforced Polymer) “I’’ simply supported beams, 

characterized by fixed mechanical properties and different geometry, as listed in Table 2.  

 

Beam wf ww tf tw Ex Ey xy Gxy fx 

 [mm] [mm] [mm] [mm] [GPa] [GPa]  [GPa] [MPa] 

A 80 160 8 8 28 10 0.25 3 240 

B 100 200 10 10 28 10 0.25 3 240 

C 120 240 12 12 28 10 0.25 3 240 

D 150 300 15 15 28 10 0.25 3 240 

Table 2. Dimensions and mechanical properties of the analyzed beams. 

 

Note that commercial “I” profiles here considered present overall depth and thickness 

respectively equal to twice and 1/10 flange width. 

More specifically the values of  the critical uniformly distributed load, associated to the local 

buckling, through the proposed mechanical model are calculated, by varying the following 

geometrical parameter: 
 

w

f f

w
SF l

w t
 . (13) 
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Furthermore, in order to characterizes the local to global buckling transition, a mechanical 

model formulated from the same authors is used [6]. 

In Figure 5, the ratio between the bending moment in mid span cross-section due to critical 

transverse load and the ultimate flexural moment versus SF is plotted. 
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Figure 5. Buckling curves for the analyzed beams. 

 

6 Conclusions 

A mechanical model capable to take into account the shear deformability of the composite 

material on the local buckling behavior of pultruded FRP thin-walled beams and columns has 

been proposed.  

The buckling behavior of  some “I” simply supported beams has been investigated by means 

of a finite element approximation.  

The results have shown that: 

- the ratio between the bending moment in mid span cross-section due to buckling 

transverse load and the ultimate flexural moment over the SF parameter assumes the 

same value for all the investigated beams (Figure 6); 

- the values of the transverse load corresponding to buckling collapse are lower than 

50% of that corresponding to the ultimate bending moment of the analyzed beams. 

The numerical analyses have also highlighted that the local buckling mode is characterized by 

web or flange crisis depending on beam slenderness.  

More specifically, the web to flange buckling transitions occurs for a value of SF 

approximately equal to 150. 
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Figure 6. Buckling curves for I beams. 
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