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Abstract 
Numerical simulations are a powerful tool to predict the feasibility of mechanical 
components. To construct simulations of composite materials with continuous fibre 
reinforcements, it is necessary to have precise models of the mechanical behaviour and 
geometrical properties of dry fabrics. The goal of this study is to develop a simulation tool of 
2D and interlock unit cell of dry fabrics and to simulate mechanical behaviour of these unit 
cells under simple stress. In order to feed simulations, 3D geometrical model of the unit cell 
have to be defined and meshed. 

 
 

1 Introduction 
Because of the high strength to weight ratio of composite materials, aircraft manufacturers are 
increasingly interested in integrating composite parts into their products. To produce these 
parts, various processes can be used. Processes such as Resin Transfer Molding (RTM) 
consist in forming a dry fabric before injecting a resin. This study concerns the first step of 
the RTM process, i.e. the preforming of the dry fabric. In order to build numerical 
simulations, it is necessary to have precise models of the mechanical behaviour and 
permeability of dry fabrics[1][3]. To define the mechanical behaviour of fabrics, two types of 
methods can be considered: experimental and numerical. Although experimental methods are 
direct and efficient, they present several drawbacks: not only are they often time consuming 
and expensive to perform, they are limited to existing fabrics and do not allow optimization. 
That is why it is judicious to complement them by numerical studies. The complexity of the 
study lies in the multi-scale nature of fibrous reinforcements, which are composed of yarns, 
themselves composed of thousands of fibres. Three different scales can be distinguished. The 
first one is the microscopic scale which takes into account the contact between thousands of 
fibres [4,5]. In these case calculations are complex and take a huge amount of time. On the 
opposite, the macroscopic scale, which considers the fabric as a continuum with a specific 
behaviour. In this case, the interlacement between yarns is not taken into account [6]. This 
scale is not sufficient to define precisely the mechanical behaviour of fabrics. The mesoscopic 
scale, in between the previous two scales, where yarns are assumed to be homogeneous and 
the fabric is constituted by the interlacement between yarns. This scale represents a good 
compromise between accuracy and complexity [7-13,16-19]. 
The aim of this study is therefore to develop a tool to simulate the mechanical behaviour of 
the unit cell of dry fabrics at the mesoscopic scale. The first step of this research is the 
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creation of a unit cell as precise as possible. Once these models have been done, they have to 
be meshed consistently in order to feed simulations. 
 
2 CAD modeling of unit cells 
2.1 Fabric structure 
For 2D fabrics, three types of structure can be distinguished: plain, twill and satin weaves. As 
the unit cell geometry of these fabrics is a priori known, 2D models can be easily obtained. 
More complex fabrics such as interlock, however, have an infinite number of architectures, 
each depending on the mechanical properties and formability intended. The user must be able 
to model each of these structures easily and, if necessary, create new structures. The 
modelling process of these fabrics is therefore more complex and time consuming. 
 
2.2 Contact between yarns 
The main difficulty is locating contacts between yarns. In 2D fabrics, the localisation and 
number of contacts are easily determined because these fabrics have weaving contacts only 
[14][15], i.e. contacts caused by yarn interlacement. 
Contact characterization is much more complex for interlock fabrics because there are a large 
number of contacts, which change with the yarn arrangements. Three types of contact can 
exist (Figure 1). 

• Weaving contacts caused by yarn interlacement. 
• Lateral contacts between yarns of the same network. The weaving process assumes 

that yarns of the same network are strictly parallel and interspaced. While this 
property is verified for fabrics with low yarn density, many fabrics, especially 
interlocks, are becoming increasingly dense, so that the interval between two yarns 
can be less than the initial yarn width. As a result, some lateral contacts between yarns 
of the same network can occur. 

• Non designed contacts occur when yarn density is high and the fabric structure 
complex. In this case, the interval between yarns is small and a supposedly straight 
yarn between two weaving contacts may intersect a transverse yarn. 

Thus it is difficult to predict a priori all the contacts for complex fabrics such as interlocks. 
 
 
 
 
 
 
 
 
 
 
 
 
2.3 Modelisation of yarn geometry 
Each yarn is built as a pipe composed of various sections and a trajectory. The trajectory is 
defined by the succession of parabolas and straight segments. The parabolas represent the 
contact zone between two yarns and the straight segments correspond to areas between two 
contact zones. Along each pipe, transverse contacts vary, leading to variations in the yarn's 
local shape. Yarns are variable section pipes. 
As for the 2D model [17], and in agreement with tomography studies, the section shape of the 
yarn comprises two parabolas connected with two segments called flat flanges. This geometry 

Non designed contacts 

Weaving contacts 

Lateral contacts 

Figure 1. Cross-section of G1151® and associated contacts
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Figure 4. Elements choice 
 
3.2 Criteria calculation 
From geometry provided by CAD model, the angles can be deduced. Two strategies can then 
be envisaged: if the section shape is not too curved, the mesh is direct, in the case of a too 
curved section shape, the mesh will be impossible due to a shear angle higher than 160°. The 
section can be cut (Figure 5) to respect criteria. 
 
 
 
 
 
 
 
 
 
 
The next objective is to determine minimum and maximum element edge length, function of 
the flat flange and the number of elements through the thickness. The aspect ratio is 
calculated to determine l1, l2 and H (Figure 6 and equations (1)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                           ) 

 
 

l 

H 
hi/n 

l2 

α 

γ 

l1 

Figure 5. Section shapes. a) Too curved and cut b) Not too curved 

(b) (a) 

Figure 6. Quadratic Element in Abaqus
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3.3 Automation 
In order to minimise the number of elements while respecting the validity criteria, the strategy 
of meshing is defined like in Figure 7, i.e. by defining a mesh seed by bias on curved edges of 
sections. The largest element will be situated in the middle of the section. Through the 
thickness, the seed is defined by number and along the length, the seed is define by size. All 
the parameters are provided by the user in a data sheet. A first verification is done to validate 
the elements. In the case of valid elements, a python program enables to mesh each yarn in 
Abaqus from mesh data and model data. This method enables consistent mesh of dry fabrics. 
 
 

 
Figure 7. Mesh parameters 

Mesh seed by bias 
Mesh seed by size 

Mesh seed by number 

 
4 Computation 
The computation is done on three cases: biaxial tension, shear and compression. This step 
requires several data. To realise realistic simulations, a representative behaviour law is 
necessary. The second need is the material parameters and finally adequate boundary 
conditions representative of the solicitation and the periodicity of the structure. 
 
4.1 Behaviour law 
The behavior model has to respect the geometrical non linearities caused by large 
displacements and large strains of the yarns and material non linearities. That is why a 
hypoelastic behavior law is chosen, that can answer both these conditions. 
This study concerns an assembly of yarns, composed of fibers; so it is necessary to define a 
homogenous equivalent material representative of these yarns. The behavior of yarns is 
difficult to define as it inherits from fibers behavior and from the characteristics of the fibers 
assembly in a yarn. The specificities of the homogenous equivalent material are triple: 
concerning longitudinal behavior of the yarn, the yarn rigidity is mostly superior to all the 
others. As a consequence, this behavior drives strain modes and it is very important to follow 
perfectly this direction. Concerning transverse behavior, observations by tomography show an 
isotropic repartition of fibers. The assumption of transverse isotropy is then done and the 
transverse behavior is defined as the combination of a surface modification and a shape 
modification. The third specificity to respect is a low bending rigidity which will be assure by 
integrating a low shear modulus. These specificities enable to define the behavior tensor (2) 
[7]. 
 

 
 
 

(2) with
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4.2 Follow material directions 
The major difficulty caused by the definition of a continuous material equivalent to a fibrous 
material is the follow of the strong direction of anisotropy that can produce errors, for 
example concerning stress actualization. It is therefore imperative to define an objective 
derivative based on the rotation of fiber direction. For a classical continuous material, Green 
Naghdi derivative is used, but this derivative is based on the average rotation of the solid and 
is not adapted to follow perfectly material direction. This derivative cannot be used here [8]. 
In the case of a material strongly oriented, the rotation chosen is that of fibers direction. 
Concretely, in Abaqus, after import and mesh of a yarn, all elements are reoriented 
automatically to follow fibers direction. This is done thanks to the same python program that 
creates the mesh. 
 
4.3 Material parameters 
Six parameters have to be identified to define behaviour tensor: Young’s Modulus, transverse 
shear modulus, and four elastic coefficients. This is done by analysing experimental tests done 
on the concerned fabrics. These tests are tension test on a yarn, biaxial test on the 
reinforcement and compression test. Moreover, friction tests are realised to define friction 
coefficient between yarns and between the reinforcement and a metallic tool. 
 
5 Conclusion and results 
A 3D geometrical model of weaving fabrics such as interlock has been defined thanks to an 
iterative strategy. The model respects two properties: consistency, which ensures that the 
model contains no interpenetrations or voids at the contact zone, and variation in the section 
shape along the trajectory. Thanks to this model, any kind of weaving fabric can be modelled 
and then meshed in Abaqus. This mesh is done automatically and respecting validity criteria. 
These models of reinforcement can also be integrated to calculation codes based on 
ahypoelastic behaviour of yarn and results can be obtained for simple solicitations. Figure 
8shows a result of a tension test made on a plain wave fabric of glass fibres. 

 
Figure 8. Tension test simulation 
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