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Abstract

The present paper deals with the hyperelastic agpgindo model the constitutive behavior of
dry fabric reinforcement for structural compositeBhe proposed approach, based on
experimental observations, assumes uncoupling leetveeveral deformation modes. The
paper presents also the identification procedure aome examples show the ability of the
proposed method to describe the deformation oft€k interlock fabrics.

1 Introduction

For critical structural parts where in-use delartiorahas to be strictly avoided, composites
using 3D thick interlock reinforcements represergramising alternative to metallic alloys
[1]. Generally, structural parts built with thosentposites are produced using Resin Transfer
Molding processes [2;3]. The first stage of thabgass consists in forming the dry
reinforcement. If the forming of metallic partswgll known, it is not really the case for those
thick reinforcements. For several years, varioumencal techniques have been developed to
simulate the forming stage of the RTM processesttior reinforcements [4-9]. For thick
interlock reinforcements, there are few proposaly.[Like for 2D reinforcements, 3D ones
present a behavior which is highly influenced bg ylarn orientation and density. That means
that the meso- and micro- structures must be takenaccount even for a 3D macroscopic
modeling.

The first stage of an efficient modeling passe®ubh the identification of the effective
deformation modes which can be observed for sunictste (seen as a material). Such
identification is the topic of the first part ofelpresent contribution.

When a material has to be described, several apipesaare possible: elastic, hypo-elastic or
hyper-elastic. The second part of the paper predéet drawbacks and advantages of hypo-
and hyper- elastic approaches and presents theafjérmenework of hyper-elasticity.

Then the approach is explained for the mesoscep#l.| The macroscopic one is an extension
of the previous meso- one. In order to achieve ithplementation of the constitutive
equation, several strain invariants are definedchviare representative to each deformation
mode. The identification procedure is described frsdl results show the capability of the
proposed approach to describe accurately the fgrmafndry reinforcements for structural
composite parts.
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2 Textile material and defor mation modes

2.1 Yarn architecture

A thick interlock material is built by the assemlaliya large number of yarns (see figure 1),
each yarn being made up of thousands of indiviflbats. Generally, flat preforms, because
they are realized using classical weaving loomsearetwo main orientations (warp and weft)
which are approximately orthogonal, so that theitatan generally be considered as initially
orthotropic.

Looking at the lower scale, the orientation of fibers inside the fiber bundle is more or less
unidirectional with a quasi-isotropic distributioof the fibers inside the bundle which

generally leads to consider the yarn as a translyeisotropic material.

Based on those considerations, one can admit ttiatlainterlock fabric is a generalization

of a single yarn structure for which there are fiilo@r directions instead of a single one.
During the forming operation, the initially orthagad yarn directions will rotate with a large

amplitude so that the material will not remain ottbpic to become anisotropic.

(b)

Figure 1. thick interlock (a) and the tomography of a singden (b)

In order make the explanations clearer, the folhgmwvill be done on the single yarn, the
extension for thick interlock material being doatel.

2.2 Yarn deformation modes

Because the yarn is not really continuous, therdeition modes of what will be called later

the “yarn material” are not exactly the same asdfermation modes classically observed in
continuous media: some of them disappear or camebéected. For a transversely isotropic
material, four deformation modes are considereglelbngation along the fiber direction; the
shear along the fiber direction; considering thect®n” perpendicular to the longitudinal

direction (the isotropy plan) the compaction aiha; shear in the isotropy plane (see figure 2).

Figure 2. Deformation modes of the yarn: (a) elongation @hpaction of the cross section (c) distortion &f th
cross section (d) longitudinal shear
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2.3 Uncoupling assumptions

Previous works have shown that coupling exists betwthe behaviors corresponding to the
deformation modes defined above [11]. In partictter fiber density, which depends on the
compaction, is an important parameter to describtha other yarn mechanical behaviors.
The proposed model does not take these couplingsatount.

3. Hyper-éasticity vs hypo-elasticity

As mentioned in the introduction, finite elememnhslations for dry fabric modeling generally
use hypo-elastic constitutive equations for botlsor@nd macro- scale modeling [12;8]. The
main advantage to use hypo-elastic models is they @re classically implemented for
plasticity simulation, which reduces the modelirftp®e. Such approach leads to define an
objective derivative of the Cauchy stress tensa famction of the strain rate tensor (eq 1).

o=

o
([w]

(1)

The main drawback of such models leads in the ddify to choose an adequate time
derivative of the stress tensor. It has been shd®hthat for strongly anisotropic materials
like yarns or fabrics, the only consistent derivatis the one which guaranties a correct
following of the fiber direction which requires st follow-up of such direction.

In the case of two fiber directions, as they do mwhain perpendicular during the forming
process, it implies either to work on non orthoddremes [14], or on two different frames
[8] and then, realize the superimposition of thatabutions of both networks for each time
increment. Neither of those solutions is easy tplé@ment in standard finite element codes.
Hyper-elastic approaches are generally writtenhie lLagrangian initial configuration for
which the working frame is already orthogonal whatoids the difficult follow up of the
current fiber directions. In order to define a hygbastic material, an elastic strain energy
potential per unit volumew must exist which only depends on the current rststate.
Derivating that strain energy density function wittgard to the right Cauchy Green strain
tensor components, one can evaluate the secoraRirchhoff stress tensor components:

S=2— )

In order to ensure that this constitutive equatfoliils the principle of material frame
indifference, functiorw must be writteras a function of invariants of the right Cauchy €re
deformation tenso€ . It must satisfy the principle of material symmyeire. the strain energy
must be invariant under any transformation beloggmthe symmetry group of the material.
It has been shown [15] that an isotropic functién exists which depends on the right
Cauchy-Green strain tens@ and structural tensor§, defining the symmetry group, such

as:

G =G0G 3

where G, are the initial fiber directions.

It has been shown [16] that for transversely igmtramaterials, the number of strain and
structural invariants required is equal to five:
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- (4)

I, to I3 are the classical strain invariants apdndls are called mixed invariants.

The main drawback of hyper-elastic models is inhiete the difficulty to easily build
coupled models and to introduce dissipative betlavidut, for 2D thin fabrics, an uncoupled
model [17] has shown its ability to describe actelyathe membrane behavior of a thin fabric
because the identification of the strain energysdgrfunction is done using experimental
results taking implicitly into account those cougis.

4. Hyper-elastic constitutive model for yarn material

4.1 Physically based invariants

It has been shown in section 2 that four defornmatimdes can be identified and five strain
invariants must be used to define the strain enatggsity function from which the
constitutive behavior must derive. There are twoysvéo define those invariants. The
methodology exposed in [18] leads to results vanylar to the ones presented here.

If vector G, is a unit vector along the fiber direction, thergation of the yarn in the

direction of fibers is directly given by invariat defined in (eq. 4). Consequently, this
quantity can be chosen as the representative wélihe length change of the yarn:

IeIong = I 4

(5)

Yarn compaction can be defined as the ratio betwbenvolume change and the length

change of the yarn:
_ s
l comp — |_ (6)
4

when distortion and transverse shear have expressidtle more complicated and use the
other strain and structural invariants definedeiq. @) [18]:

Idist:1’|1_:_5_2\/:; andlcis:d:_gs_l4 (7)
4 4 4

4.2 Strain energy density function shape and patameéentification

Due to the abovementioned uncoupling assumptianctmstitutive equation can be written
as a summation of four strain energy density flumstirepresentative to each deformation
mode.

W= V\élong( Ielong) + Wcomp( I com)+ w di(tI di)t+ w z(sl ;: (8)

The second Piola-Kirchhoff stress tensor is catedldy the derivative of such sum:
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S= ZG_W =2 aWelong ol elong_,_ ow compal comp, aWdist dl dist 4 aWcis al cis (9)
ol oc  al 0C  dl 44 0C 0l , 0C

- ag elong = comp

More details on the strain energy density functcam be found in [18], the results are
summarized here after.

4.2.1 Elongation along the fiber direction

The strain energy density function correspondinghi® first straining mode, namely the

longitudinal stretch, can be identified using asikntest on a single yarn. In order to take into
account the slight initial non linearity of theettth curve, a piecewise function is chosen:

. nl _ 2 3
if | elong <l elon@ We|0ng (I elong _aO +a1(| elong_l) +a2(I elong_ 1) +a3(| eIonEl)

| .- . (10)
if | elong >1 elon@ Wel|:ng (I elong =bO +b1(| elong_ 1) +b2(| elong_ 1)

4.2.2 Compaction and shape change of the crosmaect

The strain energy associated to the compactiontheddistortion of the yarn transverse
section is linked to several physical phenomenhemicroscopic scale like rearrangement of
fibers which are difficult to study separately. Aower-based strain energy function is
proposed for both compaction and distortion:

Wcomp( I comp) =K com(l_ I com))p and Wdist ( Idist) = % K distI dist2 (11)

The corresponding parameters can be identified gusam equi-biaxial tensile test.
Unfortunately, the solution is not unique and arimjzation procedure like Levenberg-
Marcquard one has to be used to evaluate the &kest parameters.

4.2.3 Transverse shear

The transverse shear strain energy of the yainked to the sliding of its constitutive fibers
in their preferred direction. Such a type of strenbasically dissipative as it is linked to
friction. Nevertheless, the very small energiesolagd (as compared with the tensile strain
energy in the longitudinal direction) allow assugiso for such straining mode, an elastic
behavior. It is also assumed that the corresporstifigess is constant which leads to a strain
energy potential for the longitudinal shear such as

Wcis ( Icis) = % K cisI cis2 (12)

A bending test allows the identification of suchigraeters.

5. Extension to 3D thick interlock fabrics

As mentioned in the introduction, a thick interldfeloric can be seen as an extension of the
3D yarn material behavior with two initially orthogal fiber directions.

In such a case, it has been proved [19] that tingben of strain invariants necessary to build a
mathematically isotropic function raises up to eleo that the strain energy density function
can be written such as:

Vvorthzworth(|1’|21|31|411l ol d md b b 3 (13)

5
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with 1, to I3 the classical strain invariants defined in (4) #mel eight other invariants defined
such as:

andlg =G, [C°[G, (i=1,3) (14)

5.1 Deformation modes
In a 3D case for thick interlocks, the number aheéntary deformation modes raises up to
six as shown in figure 3.

Figure 3. Deformation modes of a thick interlock: (a) undefied shape; (b) and (c) stretches in warp and weft
direction; (d) transverse compression, (e) in-plsimear, (f) and (g) transverse shear along warmefid

5.2 Potentialities of the model

The identification procedure is very similar to ttvee used for the mesoscopic modeling. It
uses uniaxial tensile tests on warp and weft doast in-plane shear and transverse shear
along warp and weft directions, and finally tramseecompaction.

Both meso- and macro- scopic models have been imguited in ABAQUS/Explicit finite
element code and allow comparing experimental amdemical forming simulations.

6. Conclusion and futureworks

A constitutive equation based on a phenomenologipaloach has been proposed for both
meso- and macro- scale textile modeling. Both aset on the definition of physically based
strain invariants able to describe the elementafprchation modes of textile materials and
accounting for the material orientation.

A strong assumption of uncoupling between all modedone. Despite this non realistic
assumption, both models prove their ability to déscin a reasonable accuracy, the behavior
of such kind of materials because the identificapoocedure implicitly takes those couplings
into account. Following this assumption, the stexiergy density function can be built as the
addition of strain energy density functions depegdon a single strain invariant, each
invariant being representative of the correspondieigrmation mode. The total stress state is
then obtained by the addition of all the contribos.

An identification procedure is proposed based assital mechanical tests for fabrics such as
uni- and bi- axial tensile tests, in-plane sheatstélike picture frame test or bias extension
tests), and bending tests.
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Some forming simulations have been preformed armvsa pretty good agreement with
experimental evidences.

In order to show the robustness of the approahriecessary to use the same yarn material
with various weaving patterns (for the mesoscal@letjoand to realize new experimental
forming on the same thick interlock where all tldadimation modes are activated.
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