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Abstract 
The present paper deals with the hyperelastic approach to model the constitutive behavior of 
dry fabric reinforcement for structural composites. The proposed approach, based on 
experimental observations, assumes uncoupling between several deformation modes. The 
paper presents also the identification procedure and some examples show the ability of the 
proposed method to describe the deformation of 3D thick interlock fabrics. 

 
 

1 Introduction 
For critical structural parts where in-use delamination has to be strictly avoided, composites 
using 3D thick interlock reinforcements represent a promising alternative to metallic alloys 
[1]. Generally, structural parts built with those composites are produced using Resin Transfer 
Molding processes [2;3]. The first stage of that process consists in forming the dry 
reinforcement. If the forming of metallic parts is well known, it is not really the case for those 
thick reinforcements. For several years, various numerical techniques have been developed to 
simulate the forming stage of the RTM processes for thin reinforcements [4-9]. For thick 
interlock reinforcements, there are few proposals [10]. Like for 2D reinforcements, 3D ones 
present a behavior which is highly influenced by the yarn orientation and density. That means 
that the meso- and micro- structures must be taken into account even for a 3D macroscopic 
modeling. 
The first stage of an efficient modeling passes through the identification of the effective 
deformation modes which can be observed for such structure (seen as a material). Such 
identification is the topic of the first part of the present contribution. 
When a material has to be described, several approaches are possible: elastic, hypo-elastic or 
hyper-elastic. The second part of the paper presents the drawbacks and advantages of hypo- 
and hyper- elastic approaches and presents the general framework of hyper-elasticity. 
Then the approach is explained for the mesoscopic level. The macroscopic one is an extension 
of the previous meso- one. In order to achieve the implementation of the constitutive 
equation, several strain invariants are defined, which are representative to each deformation 
mode. The identification procedure is described and first results show the capability of the 
proposed approach to describe accurately the forming of dry reinforcements for structural 
composite parts. 
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2 Textile material and deformation modes 
2.1 Yarn architecture 
A thick interlock material is built by the assembly of a large number of yarns (see figure 1), 
each yarn being made up of thousands of individual fibers. Generally, flat preforms, because 
they are realized using classical weaving looms present two main orientations (warp and weft) 
which are approximately orthogonal, so that the fabric can generally be considered as initially 
orthotropic. 
Looking at the lower scale, the orientation of the fibers inside the fiber bundle is more or less 
unidirectional with a quasi-isotropic distribution of the fibers inside the bundle which 
generally leads to consider the yarn as a transversely isotropic material. 
Based on those considerations, one can admit that a thick interlock fabric is a generalization 
of a single yarn structure for which there are two fiber directions instead of a single one. 
During the forming operation, the initially orthogonal yarn directions will rotate with a large 
amplitude so that the material will not remain orthotropic to become anisotropic. 
 

(a)   (b) 

Figure 1. thick interlock (a) and the tomography of a single yarn (b) 
 
In order make the explanations clearer, the following will be done on the single yarn, the 
extension for thick interlock material being done later. 
2.2 Yarn deformation modes 
Because the yarn is not really continuous, the deformation modes of what will be called later 
the “yarn material” are not exactly the same as the deformation modes classically observed in 
continuous media: some of them disappear or can be neglected. For a transversely isotropic 
material, four deformation modes are considered: the elongation along the fiber direction; the 
shear along the fiber direction; considering the “section” perpendicular to the longitudinal 
direction (the isotropy plan) the compaction and; the shear in the isotropy plane (see figure 2). 
 

 

Figure 2. Deformation modes of the yarn: (a) elongation (b) compaction of the cross section (c) distortion of the 
cross section (d) longitudinal shear 
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2.3 Uncoupling assumptions 
Previous works have shown that coupling exists between the behaviors corresponding to the 
deformation modes defined above [11]. In particular the fiber density, which depends on the 
compaction, is an important parameter to describe all the other yarn mechanical behaviors. 
The proposed model does not take these couplings into account. 
 
 
3. Hyper-elasticity vs hypo-elasticity 
As mentioned in the introduction, finite element simulations for dry fabric modeling generally 
use hypo-elastic constitutive equations for both meso- and macro- scale modeling [12;8]. The 
main advantage to use hypo-elastic models is that they are classically implemented for 
plasticity simulation, which reduces the modeling effort. Such approach leads to define an 
objective derivative of the Cauchy stress tensor as a function of the strain rate tensor (eq 1). 
 

 D:C=σ∇   (1) 

 
The main drawback of such models leads in the difficulty to choose an adequate time 
derivative of the stress tensor. It has been shown [13] that for strongly anisotropic materials 
like yarns or fabrics, the only consistent derivative is the one which guaranties a correct 
following of the fiber direction which requires a strict follow-up of such direction. 
In the case of two fiber directions, as they do not remain perpendicular during the forming 
process, it implies either to work on non orthogonal frames [14], or on two different frames 
[8] and then, realize the superimposition of the contributions of both networks for each time 
increment. Neither of those solutions is easy to implement in standard finite element codes. 
Hyper-elastic approaches are generally written in the Lagrangian initial configuration for 
which the working frame is already orthogonal which avoids the difficult follow up of the 
current fiber directions. In order to define a hyperelastic material, an elastic strain energy 
potential per unit volume w  must exist which only depends on the current strain state. 
Derivating that strain energy density function with regard to the right Cauchy Green strain 
tensor components, one can evaluate the second Piola-Kirchhoff stress tensor components: 

 

 2
∂=
∂
w

S
C

  (2) 

 
In order to ensure that this constitutive equation fulfils the principle of material frame 
indifference, function w  must be written as a function of invariants of the right Cauchy Green 
deformation tensor C . It must satisfy the principle of material symmetry, i.e. the strain energy 

must be invariant under any transformation belonging to the symmetry group of the material. 
It has been shown [15] that an isotropic function %w  exists which depends on the right 
Cauchy-Green strain tensor C  and structural tensors 

i
G  defining the symmetry group, such 

as: 
 

 = ⊗i ii
G G G  (3) 

 
where iG  are the initial fiber directions. 

It has been shown [16] that for transversely isotropic materials, the number of strain and 
structural invariants required is equal to five: 
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I1 to I3 are the classical strain invariants and I4 and I5 are called mixed invariants. 
The main drawback of hyper-elastic models is inherent to the difficulty to easily build 
coupled models and to introduce dissipative behaviors. But, for 2D thin fabrics, an uncoupled 
model [17] has shown its ability to describe accurately the membrane behavior of a thin fabric 
because the identification of the strain energy density function is done using experimental 
results taking implicitly into account those couplings. 
 
 
4. Hyper-elastic constitutive model for yarn material 
4.1 Physically based invariants 
It has been shown in section 2 that four deformation modes can be identified and five strain 
invariants must be used to define the strain energy density function from which the 
constitutive behavior must derive. There are two ways to define those invariants. The 
methodology exposed in [18] leads to results very similar to the ones presented here. 
If vector 1G  is a unit vector along the fiber direction, the elongation of the yarn in the 

direction of fibers is directly given by invariant I4 defined in (eq. 4). Consequently, this 
quantity can be chosen as the representative value of the length change of the yarn: 
 

 4=elongI I
 (5) 

 
Yarn compaction can be defined as the ratio between the volume change and the length 
change of the yarn: 
 

 3

4

=comp

I
I

I
 (6) 

 
when distortion and transverse shear have expression a little more complicated and use the 
other strain and structural invariants defined in (eq. 4) [18]: 
 

 5 3
1

4 4

2= − −dist

I I
I I

I I
 and 5

4
4

= −cis

I
I I

I
 (7) 

 
4.2 Strain energy density function shape and parameter identification 
Due to the abovementioned uncoupling assumption, the constitutive equation can be written 
as a summation of four strain energy density functions representative to each deformation 
mode. 
 

( ) ( ) ( ) ( )= + + +elong elong comp comp dist dist cis cisw w I w I w I w I  (8) 

 
The second Piola-Kirchhoff stress tensor is calculated by the derivative of such sum:  
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More details on the strain energy density function can be found in [18], the results are 
summarized here after. 
4.2.1 Elongation along the fiber direction 
The strain energy density function corresponding to the first straining mode, namely the 
longitudinal stretch, can be identified using a tensile test on a single yarn. In order to take into 
account the slight initial non linearity of the stretch curve, a piecewise function is chosen: 
 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 3

0 0 1 2 3

2

0 0 1 2

1 1 1

1 1

≤ = + − + − + −

> = + − + −

elong

elong

nl
elong elong elong elong elong elong

lin
elong elong elong elong elong

if I I w I a a I a I a I

if I I w I b b I b I
 (10) 

 
4.2.2 Compaction and shape change of the cross section 
The strain energy associated to the compaction and the distortion of the yarn transverse 
section is linked to several physical phenomena at the microscopic scale like rearrangement of 
fibers which are difficult to study separately. A power-based strain energy function is 
proposed for both compaction and distortion: 

 

( ) ( )1= −
p

comp comp comp compw I K I  and ( ) 21

2
=dist dist dist distw I K I  (11) 

 
The corresponding parameters can be identified using an equi-biaxial tensile test. 
Unfortunately, the solution is not unique and an optimization procedure like Levenberg-
Marcquard one has to be used to evaluate the best set of parameters. 
4.2.3 Transverse shear 
The transverse shear strain energy of the yarn is linked to the sliding of its constitutive fibers 
in their preferred direction. Such a type of strain is basically dissipative as it is linked to 
friction. Nevertheless, the very small energies involved (as compared with the tensile strain 
energy in the longitudinal direction) allow assuming also for such straining mode, an elastic 
behavior. It is also assumed that the corresponding stiffness is constant which leads to a strain 
energy potential for the longitudinal shear such as: 

 

 ( ) 21

2
=cis cis cis cisw I K I  (12) 

 
A bending test allows the identification of such parameters. 
 
 
5. Extension to 3D thick interlock fabrics 
As mentioned in the introduction, a thick interlock fabric can be seen as an extension of the 
3D yarn material behavior with two initially orthogonal fiber directions. 
In such a case, it has been proved [19] that the number of strain invariants necessary to build a 
mathematically isotropic function raises up to eleven so that the strain energy density function 
can be written such as: 
 

( )1 2 3 41 42 43 412 423 51 52 53, , , , , , , , , ,=orth orthw w I I I I I I I I I I I  (13) 
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with I1 to I3 the classical strain invariants defined in (4) and the eight other invariants defined 
such as: 
 

4 = ⋅ ⋅i i iI G C G , 4 = ⋅ ⋅ij i jI G C G  and 2
5 = ⋅ ⋅i i iI G C G  (i = 1,3) (14) 

 
5.1 Deformation modes 
In a 3D case for thick interlocks, the number of elementary deformation modes raises up to 
six as shown in figure 3. 
 

 
Figure 3. Deformation modes of a thick interlock: (a) undeformed shape; (b) and (c) stretches in warp and weft 

direction; (d) transverse compression, (e) in-plane shear, (f) and (g) transverse shear along warp and weft. 
 

5.2 Potentialities of the model 
The identification procedure is very similar to the one used for the mesoscopic modeling. It 
uses uniaxial tensile tests on warp and weft directions, in-plane shear and transverse shear 
along warp and weft directions, and finally transverse compaction. 
Both meso- and macro- scopic models have been implemented in ABAQUS/Explicit finite 
element code and allow comparing experimental and numerical forming simulations. 
 
 
6. Conclusion and future works 
A constitutive equation based on a phenomenological approach has been proposed for both 
meso- and macro- scale textile modeling. Both are based on the definition of physically based 
strain invariants able to describe the elementary deformation modes of textile materials and 
accounting for the material orientation. 
A strong assumption of uncoupling between all modes is done. Despite this non realistic 
assumption, both models prove their ability to describe in a reasonable accuracy, the behavior 
of such kind of materials because the identification procedure implicitly takes those couplings 
into account. Following this assumption, the strain energy density function can be built as the 
addition of strain energy density functions depending on a single strain invariant, each 
invariant being representative of the corresponding deformation mode. The total stress state is 
then obtained by the addition of all the contributions. 
An identification procedure is proposed based on classical mechanical tests for fabrics such as 
uni- and bi- axial tensile tests, in-plane shear tests (like picture frame test or bias extension 
tests), and bending tests. 
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Some forming simulations have been preformed and show a pretty good agreement with 
experimental evidences. 
In order to show the robustness of the approach it is necessary to use the same yarn material 
with various weaving patterns (for the mesoscale model) and to realize new experimental 
forming on the same thick interlock where all the deformation modes are activated. 
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