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Abstract 
The paper considers the stochastically inhomogeneous thermoelastic medium in which each  
component has of its elastic and thermal parameters and  is described by Duhamel-Neumann  
law.  The  task  of  the  study  is  to  find  a  system of  equations  for  the  averaged strain  and  
temperature and also to evaluate the effect of fluctuations of the thermoelastic field on the  
behavior of the medium. The averaged equations of thermo elasticity and thermal balance are  
constructed in the correlation approximation,  i.e. when the physical characteristics of the  
phases differ little. It is shown that in Duhamel-Neuman law appears the term, dependent on  
time. An isothermal and adiabatic effective elastic moduli and the relaxation time are defined  
and  also  is  represented  method  of  evaluation  of  the  stress  fluctuations  in  stochastically  
inhomogeneous thermoelastic media.

1 Introduction 
Composite materials are those materials which consist of components with different physical 
properties, i.e. it is a heterogeneous medium. Usage of components with different properties 
makes  it  possible  to  produce  materials  with  necessary physical  parameters.  However,  for 
successful producing such materials it is required a mathematical model that would allow one 
to  predict  these properties.  The theory of  composite  materials  may be based on different 
principles, but in order to solve a wide range of problems it must be based on the theory of 
random functions. If the size of inhomogeneities that make up the composite material is much 
less than the size of the material,  it is possible to use the ergodic hypothesis according to 
which the value averaged over ensemble equals the value averaged over volume. The paper 
sets  the task to find a common system of equations for the stress,  strain and temperature 
averaged over the ensemble. For such medium the material parameters, i.e. the modulus of 
elasticity, coefficient of thermal stresses, thermal conductivity and heat capacity are random 
functions of coordinates. Therefore field parameters such as stress, strain and temperature will 
also be random functions. The common system of equations of equilibrium and heat balance 
is given by:

L (r)u (r)=−f (r)                                                         (1)

or expanded
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                   (2)

Here ui(r) are a components of the displacement, θ is the temperature, f i(r) are components 
of  mass  forces,   w is  the  intensity  distributed  heat  source, λ (r), μ(r) are  the  Lame 
coefficients,  ρ(r ) is the density,  β(r ) is  thermal  coefficient  of stress  κ(r) is the thermal 
conductivity, cε(r) is the heat capacity at constant strain, δ ik is the Kronekker`s symbol, p is 
the parameter is the Laplace transform. For indexes that are repeated summation from 1 to 3 is 
made, angular brackets denotes statistical averaging of physical parameters.

2 Strain relaxation in the statistically inhomogeneous thermo-elastic medium.
Let us make averaging over the ensemble in equation (2)

〈L (r)u (r)〉=−f (r),                                                   (3)

and present all the random function as a sum of mathematical expectations and fluctuations,

L (r)=〈L 〉+L
(r) ; u (r )=〈u (r) 〉+u

(r)                                 (4)

then we obtain

〈L 〉〈u 〉+〈Lu〉=−f (r)                                            (5)

Subtracting from equation (1) equation (5) we have

L
〈u 〉+〈L 〉u

+(Lu
−〈Lu

〉)=0.                                   (6)

In correlation approximation, ie, when the physical parameters of different components differ 
not much we can take

Lu
−〈Lu

〉≈0 ,                                                  (7)

then equation (6) will become

〈L 〉u
=−L

〈u 〉 .                                                   (8)

It can be considered as a equations of equilibrium for a homogeneous medium with averaged 
parameters. The solution of equation (8) can be represented as

u
(r)=G (r−r1)∗L


(r1)〈u (r1)〉                                     (9)

G (r−r1) is the Green's tensor of equation of equilibrium for infinite thermoelastic medium, 
∗ is the convolution operator, ie G∗L=∫G(r−r1)L (r1)dV1 .   All of equation (1) – (9) 
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contains two parts: deformation and temperature, i.e.,  〈u 〉=[〈uk〉 , 〈θ〉]
T , a Green' stensor 

can be represented as follows

G (r)=[G ik(r) Gi4(r)

G4k(r ) G44(r)]                                                        (10)

Let us write the system of equations (9) in expanded form

ui

=G ik∗( ∂

∂xk
λ


〈εnn 〉+ ∂

∂ xl
2μ


〈εkl〉−

∂
∂xk

K
〈θ〉 )−G i4∗p (T0β


〈εkk 〉−cε


〈θ〉 ) ,  (11)

θ

=G4k∗( ∂

∂xk
λ


〈εnn〉+ ∂

∂ xl
2μ


〈εkl〉−

∂
∂xk

K
〈θ〉 )−G44∗p (T0β


〈εkk 〉−cε


〈θ〉 ) .  (12)

We  can  replace  the  displacement  with  deformation  in  equation  (11)  and  use  the  known 
property of the integral operator G for infinite medium  G (r−r1)∇ 1=∇G(r−r1) [1], then 
we obtain

εij

=G ijkl∗(λ


〈εnn〉 δkl+2μ


〈εkl〉−β


〈θ〉)−G ij4∗p (T0β


〈εkk〉−cε


〈θ〉 ),             (13)

The behavior of a medium has been investigated under static stress, without external heating. 
Therefore we can assume that 〈θ〉=0.  However,  θ


≠0  due to adiabatic heating, which will 

vary in different components of heterogeneous medium. Therefore, from (11) and (12) we 
obtain

εij

=G ijkl∗( λ


〈εnn〉δkl+2μ


〈εkl〉 )−G ij4∗pT0β


〈εkk 〉                             (14)

θ

=G4kl∗( λ


〈εnn〉δkl+2μ


〈εkl〉 )−G44∗pT0β


〈εkk〉                              (15)

where

Gijkl=()=
1
2 [ ∂

2G ik

∂x j ∂x l
+

∂
2G jk

∂x i∂ xl ] , Gij4=
1
2 [ ∂Gi4

∂ x j
+

∂G j4

∂xi ] , G4kl=
1
2 [ ∂ G4k

∂x l
+

∂G4l

∂xk ]  (16)

It will be convenient to allocate separately bulk and deviator part of the tensor  εij

 in equation 

(13):

εkk


=Gkkll(r−r1,p)∗3K
(r1)〈εnn(p)〉−Gkk4(r−r1, p)∗pT0β


(r1) 〈εnn(p)〉         (17)

ε12
d

=G1212
d

(r−r1,p)∗2µ
(r1) 〈ε12

d
(p)〉                                       (18)

In order to find the dependence between stresses and strains let us multiply equation (17) by 
β

, equation (14) by K,and equation (18) by μ and average over ensemble, then we will have

〈K  ε〉=3Gkkll (r−r1 ,p)∗〈K ( r)K (r1)〉〈εnn 〉−pT0Gkk4(r−r1 ,p)∗〈K (r)β(r1)〉〈εnn 〉     (19)
〈μ


ε ij

d
〉=2G ijkl

d
(r−r1 ,p)∗〈μ


(r)μ


(r1)〉〈εij

d
〉                            (20)

〈βθ〉=G4kk (r−r1 ,p)∗〈β(r)K(r1)〉 〈εnn〉−G44(r−r1 ,p)∗pT0 〈β
(r)β(r1)〉 〈εnn〉   (21)

Equations (19), (20) and (21) consist two-point moments of random functions 
K (r) , μ(r) , β(r)
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〈K
(r)K

(r1)〉=〈K 2
〉ϕ(∣r−r1∣) 〈µ

(r)µ
(r1)〉=〈µ2

〉ϕ(∣r−r1∣);

〈K
(r)β

(r1)〉=〈Kβ
〉 ϕ(∣r−r1∣) 〈β

(r)β
(r1)〉=〈β2

〉ϕ(∣r−r1∣),
            (22)

and [1]

ϕ(r)=exp(− r
am ) .                                                         (23)

Here  am is the average size of micro-heterogeneity. Equation (19) - (21) should be integrated 
over the variable r1 across space.  However, integration is more convenient to do in Fourier 
space. Let us make in these equations Fourier transform, we have

〈K
εkk


〉=MK 〈εkk 〉, 〈μ


ε

d
〉=Mμ〈ε

d
〉, 〈β


εkk


〉=Mβ〈εkk〉 ;

MK=∫ [Gkkll(k,p)〈K2
〉−pT0Gkk4(k ,p)〈K

β

〉]ϕ(k )dVk ;

Mμ=∫G1212(k,p)〈μ
2

〉ϕ(k )dVk;

Mβ=∫ [G4kk(k,p)〈K
β


〉−pT0G 44(k ,p)〈β

2
〉]ϕ(k)dVk

                    (24)

Fourier transformants of the Green's tensor components are

G=[G ik Gi4

G4k G44] , Gik(k)=
1

〈μ〉k2 (δ ik−
Λ+〈μ〉

Λ+2〈μ〉

kikk

k2 ), G i4 (k)=
iki(Λ−〈λ 〉)

pT0βk2
(Λ+2〈μ〉)

,

G4k(k)=
ikk(Λ−〈λ〉)

βk2
(Λ+2〈μ〉)

, G44(k)=
(Λ−〈λ 〉)(〈λ+μ〉)

pT0β
2
(Λ+2〈μ〉)

, Λ=〈λ 〉+
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2

〈κ〉k2
+p 〈cε 〉

.

 (25)

In  respect  that  with  the  Fourier  transform  
∂
x i

f (r )→−iki f (k) let  us  find  the  Fourier 

transform for  Gkkll , Gkk4 , G4kk , G44 and  φ :

Gkkll=
〈cε〉

〈 cε〉(〈λ+2μ〉)+T0〈β 〉2
+

a
p+b

; Gkk4=
T0〈β 〉

cε(〈λ+2μ〉)+T0 〈β〉2
−

ã
p+b

;

G4kk=pT0Gkk4 ; G44=Gkk4(〈λ+μ〉)/〈β〉

a=
T0〈β 〉2〈κ 〉k2

[〈cε〉(〈λ+2μ〉)+T0〈β〉2 ]2
; b=

(〈λ+2μ〉)〈 κ〉k2

cε(〈λ+2μ〉)+T0〈β〉2
; ã=

(〈λ+2μ〉)T0 〈β〉〈 κ〉k2

[〈cε〉(〈λ+2μ〉)+T0〈β〉2]2

φ (k)=
am
3

π2(1+k2 am
2 )2

.

   (26)

In the end we need to inverse Laplace  transform. As a  result,  we obtain Hooke's  law as 
follows
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σkk=3KS
∗

εkk+
〈K 2

〉a−〈K 
β


〉 ã

15 〈μ〉
∫
0

∞

F (t−t1)〈εkk(t1)〉dt1

σ
d
=2μS

∗
ε

d
+

〈μ2〉

15〈μ〉
a∫

0

t
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d
(t1)〉 dt1
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∞ x4e−btx2
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                      (27)

Stress  depends  on  time  due  to  heat,  which  appears  due  to  adiabatic  heating  during 
deformation,  τ=b−1 is the relaxation time. Adiabatic modulus of elasticity will be

K S
✶ =〈K 〉+

1

4〈µ 〉 [ 〈K 2
〉 〈µ 〉〈cε〉+〈Kβ

〉T0 〈β 〉

cε 〈λ+2µ 〉+T0〈β〉
2 ] ,

µS
✶
=〈µ 〉+

〈µ2
〉

15〈µ 〉 [6+
4〈µ 〉 〈cε〉

〈cε〉 〈λ+2µ 〉+T0 〈β〉
2 ] .

                         (28)

Isothermal modules can be obtained from (28) at β=0.

Figure 1. Time Dependence of stress  for heterogeneous medium at a constant strain.

σkk bulk stress σd shear.

For example, Figure 1 shows the time dependence of stress under constant strain. As you can 
see, the process of relaxation of stress is not only for bulk stress but also for the shear.   This 
is  due  to  the  fact  that  even  in  the  absence  of  macroscopic  compression,  microscopic 
compression in components is still present. As shown in figure above the quick deformation 
(shock) and slow deformation for the same solid will be different.

3 Fluctuations of stresses in a heterogeneous medium
We  consider  the  problem  of  thermoelastic  state  of  an  inhomogeneous  medium  under 
homogeneous  heating  without  external  stress.  As  is  well  known for  homogeneous  media 
pressure  in  this  case  will  be  equal  to  zero,  and  deformation  will  be  caused  by  thermal 
expansion. For the isothermal case, ie when  p=0 we have

〈σkk 〉=0, θ

=0, θ≠0, 〈εkk〉=

〈β〉

KT
∗ θ .   (29)
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But the strain fluctuations are not equal to zero due to the difference between the coefficients 
of thermal stresses in components. In order to estimate the fluctuations of the stress let us 
distinguish bulk part of the stress in equation (13) and use (29), then we obtain

σkk


=K
εkk


=Gkkll (r−r1)∗K 

(r)M
(r1)θ ,

M (r1)=
K (r1)

KT
 〈β〉−β(r) .

                                  (30)

Now let us find the mean square fluctuation of bulk stress

〈σkk
2

〉=Gkkll(r−r1)∗Gkkll(r−r2)〈K
2

(r)M
(r1)M


(r2)〉 θ

2                      (31)

In equation (31) the convolution is made of two variables r1 and  r2 After integration over 
these variables we receive.

〈σ 2
〉=Mσθ2 ,

Mσ=
18〈K2M2

〉

〈3K+4µ 〉
.

                                                      (32)

Formula  (32)  represents  the  fluctuations  of  stresses  in  an  inhomogeneous  medium under 
uniform heating [2].

Conclusions. 
Heterogeneous  media,  such  as  composite  materials  cannot  always  be  considered  as 
homogeneous  with  some  effective  material  parameters.  Heterogeneous  media  have  new 
properties, in particular the relaxation term appears the law of Hooke. The relaxation time 
depends on the size of the micro-structure. Moreover, the uniform heating in heterogeneous 
mediums appears the internal tensions caused by different coefficients of thermal expansion 
of components.
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