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Abstract  

Microstructure of fabric composite laminates can be very complex. Modeling such 

microstructure by using representative unit-cell requires assurance of periodicity. In that case, 

homogenization theory, a rigorous analytical method that considers periodicity, is often 

employed. Homogenization theory also considers both microscopic and macroscopic 

deformation of the unit-cell. The unit-cell model of fabric composite laminates is often 

considered to be periodic in three-dimension. However, in reality, composite laminate is very 

thin. Therefore, the effect of finite thickness must be taken into account. In this regard, unit-

cell should be assumed to have finite thickness. It can be achieved by releasing the boundary 

condition in thickness direction. This paper deals with theoretical treatment of the modified 3-

D homogenization method considering the effect of finite thickness. 

 

 

1 Introduction  

Composite material possesses a better strength-to-weight ratio compared to metal. This 

advantage becomes the main reason of composite application, especially in aerospace 

industry. In industry, the determination of equivalent thermo-mechanical properties is needed 

to represent the equivalent characteristic of composite materials. However, the heterogeneity 

in its constituent materials leads to the difficulty in the analysis of composite structure. 

Microstructure of composite structure could be very complex. Modeling such complex 

microstructure by using representative unit-cell is an efficient and accurate way to determine 

the equivalent thermo-mechanical properties. This modeling requires assurance of periodicity. 

In that case, homogenization method, a rigorous analytical method that considers periodicity 

[1], is often employed. This method considers both microscopic and macroscopic deformation 

of the unit-cell. The unit-cell model, for instance, is often considered to be periodic in three-

dimension (x-, y- and z-directions). In other words, a unit-cell is assumed to be repeated 

infinitely in three directions. Guedes and Kikuchi [2] developed computer programs for 

determining the averaged elastic constants of general composite materials by using this 

method. The programs exclude the calculation of coefficients of thermal expansion (CTE). 

CTE of fiber reinforced composites are studied using finite element method by Karadeniz and 

Kumlutas [3]. The numerical study deals with micromechanical modeling and excludes 

macromechanical modeling. In this paper, thermal effects are considered to be included in the 

formulation of homogenization method in both microscopic and macroscopic scales. Another 
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important aspect is that fabric composite laminates, especially for aerospace application, are 

very thin. Therefore, the effects of finite thickness must also be taken into account. Woo and 

Whitcomb [4] suggested these effects as a future study for the application in aerospace 

structure. In this regard, unit-cell should be assumed to have finite thickness. It can be 

achieved by releasing the boundary condition in z-direction. Challagulla et al [5] used 

homogenization method to analyze the equivalent elastic coefficients of thin composite 

network structure with orthotropic bars. However, formulation of homogenization method 

that includes both thermal effect and finite thickness is not available. This paper aims to 

propose the new formulation of this method for thermo-mechanical problem. 

 

2 Preliminary Studies of Finite Thickness Effects using Finite Element Method  

In ordinary homogenization method, the unit-cell model is assumed to be periodic in three-

dimension. In other words, a unit-cell is assumed to be repeated infinitely in three-directions. 

This can be illustrated by Figure 1. The dotted lines show the periodicity direction of unit-

cell. 

 

 
 

Figure 1. Unit-cell model with periodic boundary condition in three-directions. 

 

Finite thickness influences the averaged thermo-mechanical properties of composite material. 

In order to have a better understanding, in this regard, a unit-cell model of 3-D orthogonal 

interlocked fabric composite is built and analyzed by using ABAQUS [6]. To simulate finite 

thickness, boundary conditions in thickness direction are excluded. In other words, the model 

has free traction boundaries at the top and bottom of the unit-cell surface (Figure 2). 

 

 
 

Figure 2. Unit-cell model with free traction boundaries at the top and bottom surface. 

 

The model in Figure 2 is developed by increasing number of unit-cell stacking. The thermo-

mechanical results are normalized with the results obtained by using FEM model with three-

direction periodicity (Figure 1) as could be shown by Figure 3. 
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Figure 3. Normalized results of both methods against number of unit-cell stacking [6]. 

 

Figure 3 shows that finite thickness influences Poisson’s ratio and coefficient of thermal 

expansion (CTE) significantly. However, it only reduces elastic modulus slightly. 

 

3 Homogenization Method with Finite Thickness 

Ordinary homogenization method includes all boundary conditions in three directions [2]. A 

rigorous formulation of this method can be found in [7]. This paper explains the new 

formulation of homogenization method with two-dimension periodicity. The unit-cell model 

used in this modified formulation can be shown in Figure 2. Following steps discuss the 

concept and derivation of new formulation. Consider an elastic body with heterogeneous 

microstructure shown by Figure 4.  

 

 
 

Figure 4. Elastic body with heterogeneous and periodic microstructure. 

 

In this figure, f is body force on domain Ω, t is surface traction on boundary Γt, and Γd is 

boundary at which prescribed displacement is applied. The body consists of a large amount of 

heterogeneous and periodic microstructures as seen in Figure 5. 

 

 
 

Figure 5. Unit-cell viewed from macroscopic and microscopic scale. 
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Heterogeneous microstructure consists of at least two parts, those are solid part (¥) and hole 

part (θ) incorporated in a unit-cell. In Figure 4, S is surface of θ. Unit-cell can be viewed from 

macroscopic and microscopic scales. Both scales are correlated by parameter ε which is the 

ratio of macroscopic and microscopic dimension. Periodic is represented by periodic vector 

function which includes macroscopic coordinate x and microscopic coordinate y. In this 

modified method, the laminates, without repeating the cell in the thickness direction, is 

considered very thin in out-of-plane direction as compared to the in-plane direction. Since the 

unit-cell does not have the periodicity in x3-direction, it is necessary to modify the periodicity 

by excluding y3 term, where the periodicity in thickness direction is applied.  

 

 1 2 3 1 2 1 2 3 1 1 2 2( ) ( , , , , ) ( , , , , )g g x x x y y g x x x y Y y Y    x   (1) 

 

where 31 2

1 2 3

    
x

y

LL L

l l l
and Y is the dimension of unit-cell. 

 

However, the use of x3 term raises complex formulation in the derivation. Therefore, it is 

needed to express x3 in terms of y3 in order to simplify the derivation of the equations. Since 

there is no x3 term, the differentiation of periodic vector function with respect to macroscopic 

coordinate xi will be as follows 

 

 
1

,
i i i

g g
g

x x y


 

    
    

    

x
x y   (2) 
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x x y





  
 
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  (3) 

 

 
2 2 2

1g g g

x x y





  
 
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  (4) 

 

 
3 3 3 3 3

1 1 1
0

g g g g g

x x y y y



  

    
    

    
  (5) 

 

Limit of periodic function in microscopic scale can be written as follows: 

 

 
0

1
lim ( , ) ( , )


 



     x y x y
¥

d dYd
Y

  (6) 

 

where x = x1,x2; y = y1,y2,y3; dΩ = dx1dx2; and dY = dy1dy2dy3. In this regard, the macroscopic 

terms (i.e. in dΩ) actually consist of 2-D terms, whilst the microscopic terms still remains 3-D 

terms. The subsequent derivation processes follow the ordinary method [7].  

 

 

 

 

 

 



ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

5 

 

The thermo-mechanical problem can generally be solved using the weak-form of principle of 

virtual work. 

 

 
  


   

 

  
      

  
   

i

k i
ijkl kl i i i i i i

l j S

u v
E T d f v d t v d p v dS

x x
  (7) 

 

where ku
  is actual displacement, whilst iv  is virtual displacement. To solve Eq. (7), u should 

be approximated by asymptotic expansion series as follows: 

 

        0 1 2 2, , , ,    x y x y x y x yk k k ku u u u   (8) 

 

By substituting Eq. (8) into Eq. (7), applying the differentiation of periodic vector function, 

and rearranging and separating the expanded equation based on the order of ε, the following 

results are obtained. 

 ε
 -2

 terms: 
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2 1 2 2 2 3
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
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

  




     
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     
      
      

     
     
    

      

   (9) 

 

 
01

0



 
 

  
¥

k i
ijkl

l j

u v
E dYd

Y y y
  (10) 

 

Since virtual displacement is arbitrary, if v=v(x), the equation above will be automatically 

satisfied. If v=v(y), by applying integration by parts, Eq. (10) can be expanded as follows 

 

    
0 01 1

0
¥ ¥

k k
ijkl i ijkl i

j l j l

u u
E v dYd E v dYd

Y y y Y y y
 

 

           
        

            
   y y   (11) 

 

Gauss’ divergence theorem is applied to the first left hand side of Eq. (11), the following 

equation will be obtained. 

 

    
0 01

0

Y Ya YbC C C ¥

k k
ijkl j i ijkl i

l j l

u u
E n v dY E v dY d

Y y y y
 

  

    
    

     
  y y   (12) 

 

Integrations over YaC and YbC  will cancel each other because each boundary has opposite 

direction. Integration over YC  will also be zero because free traction boundaries are applied at 

the top and bottom of the unit-cell (see unit-cell in Figure 2).  
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The remaining equation will be as follows 

 

  
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¥

k
ijkl i

j l

u
E v dYd

Y y y




 
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  y   (13) 

 

u
0
= u

0
(x) satisfies Eq. (13). 

 ε
 -1

 terms: 

 

 

 

 

 

     (14) 

 

 

 

 

 

 

 

If v=v(x), because u
0
= u

0
(x), the equilibrium of energy is automatically satisfied.  

 

 
1

0
| |

¥

i i

S

p v dSd
Y 

     (15) 

 

Actual displacement can be represented by the following equation. 

 

      0 1, ,  x y x x yi i iu u u   (16) 

 

where u
0
 is macroscopic displacement and u

1
 is microscopic displacement as a function of 

characteristic displacement vector (χ) and thermal displacement characteristic (ψ) as follows 

 

    
 

 
0

1 ,
ppq

i i i

q

u
u

x
 


  



x
x y y y   (17) 

 

By choosing v=v(y) and substituting Eq. (17) into Eq. (14), microscopic equilibrium 

equations are obtained as follows 

Elastic problem: 
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kl
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Thermal problem: 
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 ε
 0

 terms: 

 

 

 

 

 

 

 

   (20) 

 

 

 

 

 

 

 

 

By choosing v=v(x) and substituting Eq. (17) into Eq. (20), macroscopic equilibrium equation 

is obtained as follows 

 

 

 
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  (21) 

 

i,k,p,q=1,2,3; 

j,l=1,2; 

where: 

i. Macroscopic homogenized elastic constants: 
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Elastic modulus in thickness direction
0

3ijkE cannot be obtained as a result of macroscopic 

terms changing into 2-D terms. 
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ii. Averaged stresses due to internal forces: 
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iii. Averaged thermal stresses: 
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iv. Averaged body forces: 
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4 Conclusions 

Theoretical treatment of modified 3-D homogenization method for composite material has 

been developed. Several conclusions could be drawn from the formulation: 

1) The new method includes: 

a. Effect of finite thickness, whereby out-of-plane periodicity is omitted. 

b. Effect of thermal stresses in the unit cell model. 

2) Excluding thickness effect in the derivation of the 3-D homogenization formulation leads 

the new formulation could not obtain the averaged thermo-mechanical properties in 

thickness direction because x3-direction terms are omitted. 
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