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Abstract

The assessment of nanocomposite mechanical properties is a challenging task. Their
hierarchical structure, spanning from nano to macro length-scales, urges to account for the
characteristic phenomena of each length-scale and to bridge their effects from the smaller
scale to the macroscale.

In the present work two different approaches for the estimation of the elastic modulus of a
nanoparticle filled polymer are proposed and compared. Both the models account for the
emergence of an interphase layer embedding the nanoparticle, with mechanical properties
different from those of the matrix.

1 Introduction

One of the most interesting features characteringgocomposite material is that they offer
outstanding improvements of mechanical and physjaperties at very low filler
concentrations, thus assisting in the achievemeigh-level performances across various
engineering applications.

In nanomodified polymers, as the filler size isr@ased to the nanoscale, intra- and supra-
molecular interactions lead to the emergence ointerphase zone whose properties differ
from those of both constituents and whose thickmegg be comparable to the particle size.
Sevostianov and Kachanov [1] showed that the eféécsuch interphase on the overall
mechanical properties can be substantial, deperutirtge ratio of the interphase thickness to
the particle size and the variability of the prasracross the interface thickness.

Moreover other complexities which may arise in thmaterial configuration, such as
macromolecular chain entanglement or imperfect bapccan be accounted for through the
“apparent” elastic properties of the interphase.

In this work two different approaches for the estilon of the elastic modulus of a
nanoparticle filled polymer are analyzed and comgarBoth of them account for the
emergence of an interphase layer embedding thepaaiwe, with mechanical properties
different from those of the matrix.

The first method makes use of Hashin and Shtrikexamtromechanical solution [2] within a
two step-analysis and provides an analytical esiimaof the elastic modulus of the
nanocomposites, explicitly accounting for the sind properties of the interphase.

The second approach makes a combined use of thendocell concept and of the finite
element method. This approach, initially proposgddavy and Guild [3] for microparticle
reinforced polymers, is based on the constructioa BE axisymmetrical cell of which the
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size depends on the nanoparticle radius and oriltee volume fraction and provides a
numerical estimation of the global stiffness of stiedied system.

Relevant results are discussed and compare witlaitheto shown the influence of all the
involved parameters.

2 A nanostructural model based on Hashin and Shtriknan’s solution
By using variational principles in the linear themf elasticity, Hashin and Shtrikman [2]

provided the upper and lower bounds for the effecklastic moduli, K* and G*, of an
isotropic composite material comprising a matri¥ énd a filler (p):
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fp is the filler volume fraction and subscripts m gmdefers to the matrix and the filler,
respectively.

Egs. (1) can be easily extended to account forptesence of a spherical interphase layer
embedding the nanoparticle, with elastic propertdéterent from those of the matrix, by
using a two-step analysis.

Under the hypothesis of isolated particles, nant@lyvolume fractions, and perfectly bonded
surface (Figure 1a), each particle and the surrognidterphase material can be changed for
an “equivalent homogeneous spherical particle (EHP)” of radius a¥y+t, beingrgy the radius

of the original nanoparticles andhe interphase thickness (Figure 1b).
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Figure 1. Convertion of the three-phase nanocomposite inteqaivalent two-phase material.

Then, as a first step, the elastic properties efBHP, K' and G', can be thought of as the
lower bound of the effective elastic moduli of aotywhase material constituted by the
interphase and the nanopatrticle only, which caadtienated according to Egs. (1):
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As a second step, the elastic properties of th@ewmnposite, K and G, can be assessed
through the lower bound of the effective elasticduoof the two phase material constituted
by the matrix and thEHP:
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Finally the modulus of elasticity in tension of thenocomposite, & can be determined as:
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The validity of Eqs. (4a) and (4b) is hampered thy tonditionfp(?j <1, providing the
0

following limitation on the interphase thickness t:
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It is worth mentioning here that a “two-step” arsa$yusing Hashin’s solution has also been
proposed by Dorigatet al. [4] with the aim to take into account agglomenatedfects arising

in nanocomposites. However in the first step ofrthealysis, Dorigato et al. [4] suggested to
use the upper bound Eq. (1) instead of the lower ag proposed in the present work.

3 A FE approach based on the Voronoi cell

The Voronoi cell approximation was developed by Yand Guild [3] with the aim to
determine the stiffening effects due to spheri@atiples within a matrix using finite element
analysis, under the hypothesis of homogeneous &toigsocess of particles, with a further
correction to account for the non-overlapping oftipkes. The Voronoi cell surrounding each
particle is defined as the set of points belongmmthe space which is regarded as the domain
of the distribution, characterized by being closethe center of the particle belonging to that
cell than to every other center of particle in thaterial [3] (Figure 2a). Generally speaking,
this cell can be much irregular; in order to oveneothis Davy and Guild [3] proposed to
reshape it into a cylinder with the same volumeisTdpproximation is consistent with the
nature of the stress state around a sphericacfgattnder uniaxial loading [5, 6]. The size of
the equivalent cylinder is defined by the followiageraged radius (Figure 2b):
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Wherer is the radius of the spherical filler afidhe volume fraction.
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Figure 2. (a) Schematic representation of Voronoi's cells@unding particles in a 2D space. (b)The equivalent
Voronoi's cell proposed by Davy and Guild [5].

The method proposed by Davy and Guild is modifieceito account for an interphase layer
embedding the nanoparticle, with elastic propertiggerent from those of the matrix (see
Figure3a). Such a region is assumed to be homogeneousuwifiorm elastic properties. By

doing so, the outer interphase raditis;,y, should always be lower thaR, so that the
following condition on the on the interphase thieka holds :

t< ro[l—g/s—?J (8)

The equivalent Voronoi cell can be used within mitéd element analysis with aim to
determine the elastic modulus of the nanocompdsiteimply evaluating the global stiffness
of the cell. The polar symmetry of the analyzedteysallows one to use axy-symmetric
plane elements for the finite element analysis. hWigference to Figur@b, symmetric
boundary conditions can be used, alé®) further reducing the complexity of the analysis.
An example of the mesh used in the FE models iwsho Figure 3c.
The boundary conditions applied to the cell arenshon Figure3 and can be summarized as
follows:

- all nodes alon®C are constrained to the same displacemgnt

- all nodes alondpC are constrained to the same displaceragnt

- aconstant stress is finally applied alondpC.

Accordingly, the averaged stiffness of the FE cahll be calculated as follows:

Q

E:E:
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= (9)
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whered is theuy displacement of the nodes aloDg.
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In addition a statistical correctiorkd,) related to particle dispersion, can be introdudée
elastic modulus of the nanocomposite can be finadifmated according to the following
expression:
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1.1
EC E corr corr

S

=N\
&
I AWAWAYANRS

N
Al s s sXs

(a) | (b) (c)

Figure 3. (a) The equivalent Voronoi cell proposed to actdar an interphase layer. (b) Geometry and
boundary conditions of the axis-symmetric cell usethe FE calculations. (¢) Example of the megtdisa the
FE analyses.

3 1
The second order differential term in Egs. (10 a{b%j , can be approximated, using the
r0
finite difference method, as:

(Ff] { Fjls , F}S -2 E_J/AZ (11)
r, E rnE r,’E, 1 E

whereE; andE; are the averaged Young modulus associated toafelbsliusR; andR;:

R: R, (12)

BeingA the step size (convenient valued\adre listed in Table 1).
The coefficient of variationCV, accounting for particle statistical distributiazan be
calculated as follows:

ul+3u3-4

ov(t,)=|(t,2 11109 1—2Eu3e{k( | H du ||-1 (13)



ECCM15 - 15™ EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012

where k can be obtained from the following equation

1-f 1 [-k(u'1+3u3—4H
P :I u-’e du (14)
fp 0
fp A Ccv fe A Ccv

0.02 8 0.705579 0.1 1 0.4652

0.04 6 0.63240% 0.2 0.6 0.27647

0.06 4 0.569664 0.3 0.4 0.14935

0.08 2 0.514471 04 0.2 0.061194

Table 1.Values forCV and4, as a function of,, to be used in Eq. (10) and Eq. (11).

5 Results and discussion

The aim of this section is to compare the resultsciv can be obtained with the model
proposed.

Figure 4 shows the values of the normalized elasbdulus, B E;, where E, is the Young
modulus of the polymer matrix, versus the nanogplartiadius. The effect of the interphase
thickness and of the nanoparticle size is evidénmt.a given value of t, the smaller the particle
size the higher the overall elastic modulus. Coselgr as the nanopatrticle size increases, the
overall elastic modulus asymptotically decreaséss €ffect is due to the reduced influence
of the interphase for larger nanoparticles. Itlsavident that beyond particle radii greater
that about 70 nm, independently of the interphdsekness, the nanocomposite elastic
modulus tends towards the same constant value.
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Figure 4. Effect of the particle radius and of the interpdghickness on the normalized nanocomposite elasti
modulus. Comparison between Eg. (5) and Eq. (10a).

Differently, Figure 5 shows the effect of the elagproperties of the interphase on the
normalised elastic modulus of the nanocomposites évident that as the interphase elastic
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stiffness increases the nanocomposite elastic medntreases, while for softer interphases
the nanocomposite stiffness is lower than thahefrhatrix.
Figures 4 and 5 also show that the results obtaiyedsing the two analyzed method are in
good agreement as far as conditions given by Bar(@ Eq. (8) are guaranteed.
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Figure 5. Effect of the particle radius and of tBgE,, ratio on the normalized nanocomposite elastic ruzdu
Comparison between Eq. (5) and Eqg. (10a).
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Figure 6. Effect of the filler volume fraction and of theémphase thickness on the normalized nanocomposite

elastic modulus. Comparison between Eq. (5) and ).

Finally Figure 6 shows the normalized elastic madubf the nanocomposite versus the
nanofiller volume fraction for different interphadiéickness. It is evident that, for a given
value off,, the thicker the interphase layer, the higheraverall elastic modulus. Moreover,
it is evident that both methods predict an elastiodulus monotonically increasing as a
function of the nanoparticle volume fraction. Thiend disagrees with the behaviour of
“stiffness leveling” exhibited by the experimental data which is unsadly acknowledged to
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be due to aggregation effects arising at highemmel fractions and which are, by hypothesis,
neglected by the models proposed in the previocisoss.

6 Conclusions

In this work two different approaches for the estilon of the elastic modulus of a
nanopatrticle filled polymer are analyzed and coregaBoth the proposed models account for
the emergence of an interphase layer embeddingaheparticle, with mechanical properties
different from those of the matrix. It has beenwhdhat both models are able to seize the
effect of the interphase thickness and elastic gntags. Moreover the models are able to
account for the nanoparticle size, the smallerpiuicle radius the higher the overall elastic
modulus.
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