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Abstract 
The present work puts in evidence some interesting features of Pultruded Fibre-Reinforced 
Plastic (PFRP) I-section columns. A finite-element model of a commercial I-section shape 
with dimensions 305×152×12.7 mm was implemented using four-node orthotropic plate 
elements. Ten column lengths were investigated, covering the range from stocky up to very 
slender columns. A nonlinear analysis of buckling and postbuckling was carried out using the 
displacement control method. It was observed that, in the case of stocky columns, the ultimate 
conditions are governed by the web failure, whereas, in the case of slender columns, the high 
longitudinal compressive stresses attained lead to the flange failure. With respect to a wide-
flange shape by the same pultruder and with equal cross-section area, the I-section column 
shows a higher ultimate resistance in a broad range of column lengths. 
 
 
1 Introduction 
In PFRP short columns with wide-flange (WF) section subjected to axial compression, the 
instability is triggered by the flange buckling (see [1]) and the ultimate conditions are 
governed by the strength of the web-flange junctions, [2]. In slender WF columns, the 
interaction between global and local buckling modes may occur (see [3]) and the ultimate 
resistance is strongly influenced by the amplitude of the initial imperfection, [4]. With regard 
to PFRP narrow-flange (I-section) profiles, less information is available, since WF columns 
are generally preferred for construction. However, I-section columns are characterized by 
some interesting features, which the present work tries to explain. A finite-element model of a 
commercial I-section shape with dimensions 305×152×12.7 mm was implemented using four-
node orthotropic plate elements. Ten column lengths were investigated, covering the range 
from stocky up to very slender columns. A geometric nonlinear analysis was carried out by 
imposing an incremental column shortening to the end section centroids. The failure 
mechanisms of the column are discussed in the paper, and a comparison with a WF shape of 
the same pultruder and with similar cross-section area is presented. 
 
2 Analytical buckling loads 
The equations presented in the following apply to WF- or I-section columns with length L, 
cross-section height H, flange width bf and, finally, web and flange thicknesses tw and tf, 
respectively (Figure 1a). 
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Figure 1. Column cross-section (a) and shapes of S- (b) and F-imperfection (c). 
 
Column section dimensions Eeff A Jmin D11 D22 D12 D66 

mm GPa m2×10−3 m4×10−5 Nm×103 Nm×103 Nm×103 Nm×103 
305×152×12.7  (I) 17.2 7.426 0.754 3.052 1.064 0.351 0.495 
254×254×9.5 (WF) 17.2 7.084 2.600 1.290 0.450 0.148 0.209 

Table 1. Full-section properties and laminate bending stiffnesses for the two column sections, [6]. 
 

Slenderness λP Column 
section  

0.4 0.6 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 
L  694.4 1041.6 1388.8 1562.4 1736.0 1909.6 2083.2 2256.8 2430.4 2604.0 I n 2916 4428 5940 6588 6528 7200 7872 8544 9216 9792 
L 1919.4 2879.1 3838.8 4318.6 4798.5 5278.3 5758.2 6238.0 6717.9 7197.7 WF n 10032 14916 19932 22440 22680 24960 27240 29520 31680 33960 

Table 2. Column lengths L (in mm) and corresponding numbers of finite elements (n). 
 

Strength property Symbol Nominal strength (MPa) 
Longitudinal tensile strength fLt 207.0 
Longitudinal compressive strength fLc 207.0 
Transverse tensile strength fTt 48.3 
Transverse compressive strength fTc 103.0 

Web and flanges 

In-plane shear strength fV 31.0 
Longitudinal compressive strength fLc,j 207.0 
Bending strength fTf,j 68.9 Web-flange junctions 
Shear strength fV,j 31.0 

Table 3. Strength values for the two columns analyzed, [6]. 
 
2.1 Global buckling 
For a slender PFRP column in compression, the global buckling load may be estimated (see 
[5], [6]) using the Euler formula: 
 
 ( )2

mineff
2

Eul kLJEP π=   (1) 
 
where coefficient k takes account of the end restraints (k = 1 for a simply supported column) 
and Eeff and Jmin (see Table 1 for the shapes analyzed) are the effective modulus of elasticity 
(see [7]) and the second moment of area with respect to the minor-axis, respectively.  
 
2.2 Local buckling 
With regard to the local buckling problem for stocky pultruded columns, several analytical 
solutions and parametric analyses are available, [8]−[10]. Hereafter, the explicit expressions 
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for the critical normal stresses given in [11] under the long-plate hypothesis are used. In 
particular, if web and flanges are considered separately from each other and regarded as 
orthotropic plates in uniaxial compression elastically restrained along their common edges 
(i.e. the web-flange junctions), the buckling load may be given the following form: 
 
 { }wcr,fcr,loc ;min ffAP ⋅=   (2) 

 
where A is the cross-section area (Table 1) and fcr,f and fcr,w indicate the critical normal 
stresses of flanges (index “f”) and web (index “w”), respectively. The critical normal stress of 
the flanges can be written as (see [11]): 
 

( )( )[ ] ( ){ } ( )[ ]2
fff,22f,11fcr, 212.411711611.15 btKKDDf ζ+−+υ−η−+υ−η=   (3) 

 
if K ≤ 1 and 
 

( )( )[ ] ( )[ ]2
fff,22f,11fcr, 21611.15 btKDDf υ−η−+υ−η=   (4) 

 

if K > 1. In Eqs. (3) and (4), ( )f6,6f,12f,12 2DDD +=υ , ( ) f2,2f,11f6,6f,12 2 DDDDK += ,  

( )ζυ−+=η 55.322.711  and ( )fff,22
~2 bkD=ζ , where 

 
 ( )[ ]fw2,2f

~ tHrDk −=   (5) 
 
represents the rotational spring stiffness reproducing the restraining effect exerted by the web 
on each half flange. The critical normal stress of the web can be written as (see [11]): 
 

( )( )[ ] ( )[ ]2
fww6,6w,12

2
w,22w,11

2
wcr, 262.02139.412 tHtDDDDf −+ξ++ξ+π=   (6) 

 
where ( )2.1'61.011 ζ+=ξ  and www,22

~' kbD=ζ , being 
 
 rbDk ff6,6w 4~

=   (7) 
 
the torsional stiffness of the flanges reproducing the restraining effect exerted by the flanges 
on the web. Coefficients D11,i, D22,i, D12,i and D66,i (i = f, w) appearing in the previous 
equations are the bending stiffnesses of the wall segments of the cross-section, [5]. The 
bending stiffnesses of the two column section analyzed are reported in Table 1, where the 
index has been dropped, since identical elastic properties for web and flanges are provided by 
the pultruder. Coefficient r in Eqs. (5) and (7) is an amplification factor depending on the 
axial compression and is given by: 
 

 ( ) 1
w,11

SS
wcr,f,11

SS
fcr,1 −

−= afafr   (8) 
 
if w,11

SS
wcr,f,11

SS
fcr, afaf <  or by: 
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 ( ) 1
f,11

SS
fcr,w,11

SS
wcr,1 −

−= afafr   (9) 
 

if w,11
SS

wcr,f,11
SS

fcr, afaf > , where 
 
 ( )[ ]2

fff,66
SS

fcr, 212 btDf =   (10) 

( )[ ] ( )[ ]2
fww6,6w,12w2,2w,11

2SS
wcr, 222 tHtDDDDf −++π=   (11) 

 
represent the critical stresses of half-flanges and web, respectively, considered as long plates 
simply supported (“SS”) along the web-flange junctions. In Eqs. (8) and (9), a11,i (i = f, w) is 
the tensile compliance of flange or web panels (a11,f = a11,w = a11 for the two column sections 
analyzed). For WF-section columns, the condition w,11

SS
wcr,f,11

SS
fcr, afaf <  generally occurs and 

the local buckling load Ploc turns out to be given by Afcr,f, with fcr,f provided by Eq. (3) or by 
Eq. (4). In contrast, for I-section columns, the condition w,11

SS
wcr,f,11

SS
fcr, afaf >  generally occurs, 

yielding Ploc = Afcr,w, with fcr,w provided by Eq. (6). In the following, the use of Eq. (6), with 
the restraint stiffness given by Eq. (7), will be referred to as the elastically restrained web 
(ERW) approximation, whereas the more conservative assumption SS

wcr,SSWloc,loc AfPP == , 

with SS
wcr,f  given by Eq. (11), will be referred to as the simply supported web (SSW) 

approximation. A universal slenderness ratio is usually defined as (see [12]): 
 
 Eulloc PPP =λ   (12) 
 
depending on the two individual buckling loads given by Eqs. (1) and (2). 
 
3 Finite element modelling 
Four-node orthotropic plate elements (see [13]) were used and preliminary convergence rate 
tests were carried out to optimize the mesh size. The meshes were located on the middle 
surface of the flanges and the web. The slenderness ratios λP and the corresponding lengths L 
of the columns analyzed are reported in Table 2. At the same time, for each λP, the table 
provides the number n of finite elements used for the analysis. The end sections were assumed 
to remain plane, since warping deformations do not play a significant role in the experimental 
tests [2]. Hence, the simple support condition was reproduced using master-slave elements to 
force the column end cross-sections to rotate rigidly about their principal inertia axes while 
preventing any in-plane displacement, [3]. 
 
3.1 Initial imperfections 
Two different imperfection shapes were taken into account with reference to the following 
dimensional tolerances: straightness (“S”) and flatness (“F”). In particular, the S-imperfection 
was assumed in the shape of the first global buckling mode (Figure 1b) and reproduced 
through end moments acting about the minor-axis, [3]. The F-imperfection was assumed to be 
proportional to the first local buckling mode (Figure 1c) and reproduced by five force 
distributions varying with sinusoidal law along the flange edges and the centreline of the web 
(see [3]). Two sets of amplitudes were considered for the imperfection shapes. In the first set, 
the limiting tolerances indicated by the American standard [14], i.e. L/240 for the S-
imperfection and 8.0⋅10−3H for the F-imperfection (see also [7]), were adopted. In the second 
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set, reduced amplitudes were used in accordance with the general high standard of 
manufacture, i.e. L/4500 for the S-imperfection (see [4]) and 2.0⋅10−5H for the F-
imperfection, [2].  
 
3.2 Failure criteria 
Stress checks were performed in the post-processing phase following [2], where the Tsai−Wu 
criterion (see [15]) was used to determine the onset of failure in the web and the flanges of the 
columns, whereas a quadratic failure criterion was proposed for the web-flange junctions. 
However, the web-flange junction data for the pultruded shapes analyzed in the this work are 
not available  at the present and so conservative estimates of the strengths required were 
adopted (see [3], [16]). In particular, transverse bending and interlaminar shear strengths of 
the web (see [6]) were used in place of bending and shear strengths of the web-flange 
junction, respectively. The strength values used in the failure criteria are reported in Table 3. 
 
4 Numerical results 
The FE computed P-δ curves of the I-section column, being δ the centroidal column 
displacement in the minor-axis plane, are reported in Figure 2a and Figure 2b for λP = 0.4 and 
λP = 1.3, respectively. For the stocky column (Figure 2a), the web buckling prevails and 
Ploc,ERW and Ploc,SSW indicate the local buckling loads corresponding to the ERW and the SSW 
approximations (see Section 2.2), respectively. The curves labeled F and S in Figure 2a 
indicate the numerical results for the column with F- and S-imperfection, respectively, and 
amplitude equal to the corresponding limiting tolerance (see Section 3.1). Analogously, “F 
red.” and “S red.” refer to the reduced set of imperfection amplitudes. Due to the stable 
postbuckling behaviour exhibited by the orthotropic plates in uniaxial compression (see [17]), 
the resisting force P significantly exceeds the local buckling load, especially for the reduced 
imperfection amplitudes. As a matter of fact, in this case, the ultimate conditions correspond 
to failure at the mid-depth of the web and the ultimate column load obtained is Pu = 641.3 kN 
(curve S red.) or Pu = 652.2 kN (curve F red.). The web failure was also observed for the F-
imperfection with the limiting amplitude (curve F), but in correspondence of Pu = 485.0 kN. 
In contrast, for the S-imperfection with the limiting amplitude (curve S), the flange failure 
was observed due to the significant minor-axis sweep, and the column resistance turned out to 
be Pu = 517.1 kN. 
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Figure 2. FE computed P-δ curves of the I-section column for λP = 0.4 (a) and λP = 1.3 (b). 
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Figure 3. FE predicted ultimate column loads compared with local and global buckling and buckling interaction 
design curves (a). Comparison between numerical results and experimental failure loads from [20] (b). 
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Figure 4. FE predicted ultimate column loads of the I- and the WF-section profiles reported versus the 

slenderness ratio λP in nondimensional form (a) and versus del column length L (b). 
 
For the slender column (Figure 2b), the global instability prevails and the numerical solutions 
are compared with PEul from Eq. (1). In particular, for the reduced imperfection amplitude 
(curve S red.), a bifurcation load Pb = 241.8 kN, followed by a descending branch, is attained 
in correspondence of δ = 103.3 mm. It corresponds to the onset of interaction between the 
global and the flange buckling. Yet, due to the flange failure of the column undergoing a large 
minor-axis sweep, the ultimate load is Pu = 240.9 kN < Pb and corresponds to δ = 75.8 mm. 
The solution for the S-imperfection with the limiting amplitude (curve S) is qualitatively 
similar, but Pb = 220.3 kN and Pu = 211.5 kN for δ = 106.5 mm and 78.0 mm, respectively. 
The failure mechanism described, observed also for λP = 1, 1.1, 1.2, 1.4 and 1.5, was 
documented in [18]. 
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4.1 Ultimate column loads of the I-section profile 
The ultimate column loads Pu obtained by the FE analysis are reported in nondimensional 
form in Figure 3a versus the slenderness ratio λP. In particular, two different 
nondimensionalizations, corresponding to the ERW and the SSW approximations (see Section 
2.2), are used in the figure. Moreover, the results obtained for both the limiting and the 
reduced values of the imperfection amplitudes are reported. Finally, for the columns with λP = 
0.4, 0.6, 0.8 and 0.9, the reported value of Pu is the minimum between that for the F- and that 
for the S-imperfection. In the same figure, the full lines represent the two independent 
buckling loads and the buckling interaction design curve provided in [12], i.e.: 
 

 ( ) ( )222
PPPPPPP cc λλ−Φ−Φ=χ   (13) 

 
where ( ) 21 2

PP λ+=Φ  and cP = 0.65 (see [19]). It can be noted that, with respect to the 
limiting tolerances, the reduced set of imperfection amplitudes yields a significant 
improvement in the column resistance for all λP considered. In Figure 3b, the nondimensional 
(Ploc = Ploc,ERW) ultimate column loads for the reduced set of imperfection amplitudes seem to 
fit well, on average, the experimental failure loads of WF columns (adapted from [20]). 
 
4.2 Comparison with a WF-column with equal cross-section area 
A WF-section column by the same pultruder was then selected for comparison purposes 
(Table 1). In particular, with respect to the I-section column analyzed, area and bending 
rigidity in the minor-axis plane of the WF-section are about 4.5% less and 245% larger, 
respectively. The local buckling mode of the WF column is dominated by the flange buckling 
(see Section 2.2) and Ploc = 191.9 kN. When the ultimate loads of the I-section column are 
reported in nondimensional form for Ploc = Ploc,SSW (Figure 4a), a substantial equivalence 
between the two pultruded shapes is observed if imperfections with reduced amplitudes are 
considered, whereas the limiting imperfection amplitudes dramatically affect the WF column. 
As a matter of fact, when the ultimate column loads Pu are reported versus the column length 
L (Figure 4b), the I-section profile shows a better performance in a wide range of column 
lengths, i.e. L ≤ 2 up to about 3 m, depending on the imperfection amplitudes.  
 
5 Conclusions 
The failure mechanism of the I-section shape analyzed is triggered by the web buckling for L 
up to about 1.5 m. Hence, with respect to a WF column with nominally identical axial load 
capacity (i.e., with equal cross-section area and longitudinal compressive strength), the I-
section column performs better for L less or equal to 2 up to about 3 m, depending on the 
imperfection amplitude.  
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