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Abstract  
A combinatorial optimization method is proposed for finding the optimal stacking sequence 
and the ply drop-offs scheme of a blended composite structure. This method assumes that the 
thicknesses of the regions in the structure are fixed in advance. It is able to handle efficiently 
design and manufacturing rules which are of combinatorial type. The optimization problem is 
formulated as a constrained binary programming problem and it is solved by applying both a 
primal and dual backtracking procedures with a local search method. Some numerical 
experiments are carried out to show the efficiency of the optimization method with respect to 
both computational time and quality criteria. 

 
 

1 Introduction  
In the recent years, composite materials have taken a growing importance in the aeronautical 
industry. Because they exhibit high performance properties and lead to a considerable weight 
reduction, they can be an alternative choice in the design of many aircraft parts.  
The design and manufacturing processes of a panel are based on a ply drop-off technique. If 
the panel is divided into regions (Figure 1), each ply does not cover all the surface of the 
panel but some regions of it. As a consequence, the panel has a varying thickness over the 
surface of the panel which leads to a weight reduction. 
In this paper, we suppose that the spatial distribution of the thickness over the panel is fixed 
and we are interested in finding the ply drop-offs scheme and the fiber orientations that 
maximize the buckling load of the panel. It is further assumed that the fiber orientation in 
each ply can take one of the following values: -45°, 0°, 45° and 90°.  The angle sequences of 
each region of the panel have to satisfy some design and manufacturing rules based on 
mechanical considerations.  The angle sequences must contain a fixed number of plies of each 
orientation; two consecutive angles cannot have a difference of 90° and there can be at most 
four consecutive identical orientations. These constraints are called the design rules. The 
continuity of the plies in all regions of the panel is referred to as the manufacturing rules.  The 
nature of such rules makes the optimization problem a combinatorial one. 
Many optimization methods based on genetic algorithms have been developed to address this 
specific problem. They differ by the techniques used to satisfy the design/manufacturing 
rules. In [4,6,8,10,12] the manufacturing constraints are addressed using a penalty approach. 
In [2,9,11] a sub-laminate approach is used where regions sharing the same sub-laminates are 
grouped into one design variable. This method can guarantee the continuity of the plies in all 
the regions (blended structure). In [1,3,5,7] the continuity of the plies (the blending) is 
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imposed by a guide-based approach.  The contribution in the present work can be summarized 
in three points.  

• Defining a parameterization vector D of the ply drop-offs between the regions of the 
panel. This parameterization insures that the panel is always blended thus it avoids the 
use of a penalty. The sequences of all the regions can be deduced from two vectors: 
the angle sequence S of the thickest region and the ply drop-offs D. They  are the only 
optimization variables. 

• A mathematical formulation of the constraints (the design rules) is proposed based on 
a primal-dual approach. This approach gives the relationship between the angle 
sequences of the regions and the ply drop-offs in order to have an admissible panel at 
each iteration. 

• An optimization algorithm based on the preceding two points is proposed. It uses a 
backtracking procedure with a local search method to perform the optimization. This 
standard choice in combinatorial optimization shows the efficiency of the proposed 
algorithm for the problem of our interest.  

2 Parametrization of the Ply Drop-Offs and the Design Rules 
Consider a panel composed of six regions, each one having its own thickness (see Figure 1). 
Let A and B be two adjacent regions where the thickness of B is smaller than or equal to the 
thickness of A. If the panel is blended, the plies composing region B have to be a subset of the 
ones of region A: some plies of region A are prolonged into region B while the others are 
dropped. The drop-off rules are not fixed in advance but they are parametrized by the 
permutation vector D. This permutation vector D allows defining any ply drop-offs.  
Let N be the number of plies in the thickest region. Using this vector D, a N×N lower 
triangular matrix can be constructed and its rows are permuted according to D. This matrix 
gives the drop-off rules following the blending principle. It gives the set of plies composing 
each possible thickness. Each column of this matrix represents a possible thickness and gives 
the ply sequence composing it. An element (i, j) of this table indicates whether ply i belongs 
to the set of plies of thickness j or not. Figure 1 shows a drop-off table including this 
permuted lower matrix. In the example, D = (5, 6, 7, 1, 3, 4, 2), region 6 of thickness 7 is 
composed of the plies (1, 2, 3, 4, 5, 6, 7) and region 3 of thickness 5 is made of the plies (1, 2, 
3, 5, 6). The plies that are dropped between these two regions are grayed in the table. They  
correspond to the plies having entries equal to 1 in the thickness 7 and 0 in the thickness 5. 
Using this table, one can deduce the ply sequences in all the regions of the panel and the 
blending principle is satisfied thanks to the fact that the drop-off table contains a permuted 
lower triangular matrix. Note that with 7 plies, it is possible to have 7 different values for the 
thickness, even though only 6 of them are present in this particular panel. 
The inward and the outward drop-off are special cases for which D = (1, 2, .., 7) and D = (7, 
6, .., 1). Let ui be the ply sequence of the region i of the panel. We have u1 = (1, 2, 3, 5, 6, 7), 
u2 = (1, 2, 3, 6), u3 = (1, 2, 3, 5, 6), u4 = (2, 3) u5 = (1, 2, 3) and u6 = (1, 2, 3, 4, 5, 6, 7). The 
design rules have to be applied to these ply sequences: the ply orientations have to be chosen 
such that these ply sequences are admissible. 
The design rules are the following: 

• The orientation in each ply must be chosen such that two consecutive plies do not 
have a gap in the orientations equal to 90° meaning that (0°, 90°) or  (−45°, 45°) 
cannot be two consecutive plies in all the regions of the panel. This rule aims to reduce 
the delamination risk at free edges. 
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• Maximum four consecutive plies in each region can have the same orientation. This 
rule reduces the interlaminar shear strength between groups of same orientation. 

• A fixed number of plies of each orientation is defined in each region. This constraint is 
typically found in a global/local optimization framework. Note that this rule includes 
the case of a balanced sequence. 
 

 
Figure 1. Blending principle and drop-off rules defined by the permutation vector D. 

 
3 The Primal and the Dual Problems 
First, we define the following primal problem: for a given ply drop-offs scheme D, find all 
sequences S that are admissible with respect to D. Let A(D) be the set of all admissible 
sequences with respect to  the ply drop-offs scheme D. 
We define the following dual problem: for a given sequence S, find all the ply drop-offs 
schemes D for which S is admissible. In this case we use A’(S) to denote the dual set of all 
the ply drop-offs for which S is admissible. 
The enumeration of the elements of these sets is based on backtracking algorithms which will 
be presented in Section 5. We also define the distance d(S1, S2) between two sequences as the 
number of plies of S1 which have a different orientation in S2, and the distance d(D1,D2) 
between two ply drop-offs as the number of elements of D1 which have a different value in 
D2. Such distances over discrete objects (like S and D) are known as the Levenshtein 
distances. We finally define the neighborhood of a sequence S1 A(D) and the one of a ply 
drop-off D1 in A’(S) as: 
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for some predefined d0. The first one is the set of admissible sequences with respect to D that 
differ from S1 by d0 plies. The second one is the set of ply drop-offs for which S is admissible 
and differs from D1 by d0 elements. 
 
4 The Primal and the Dual Problems 
Finding admissible sequences is not a trivial task given the combinatorial nature of the 
constraints.  Most of the time, one cannot guess intuitively such sequences and computer-
based algorithms must be used to perform this task. 
The easiest but not the most efficient way to find sequences which are admissible for a given 
ply drop-off is the so-called brute-force enumeration. It consists in enumerating all the 
sequence candidates and checking for each one its admissibility. The main disadvantage of 
this method is that its computational cost grows exponentially with the number of plies. For 
example, for 16 plies there are 416= 4294967296 candidates to be checked and for N=32 plies 
there are 4^32 ~1.844×1019 possibilities! A more sophisticated technique has to be used in 
order to decrease the number of candidates to be checked.  
Enumerating all possible sequences consists in building an enumeration tree like in Figure 2. 
Each level of the tree represents a ply and each node has four children which are the four 
possible angle values of the next ply. The enumeration tree must have the number of plies +1 
level. A stacking sequence is a branch of the tree connecting the root to a leaf (the lowest 
node). One can see that the size of the tree grows exponentially with the number of plies and 
spanning the whole tree becomes quickly unfeasible.  
The idea of the backtracking is to span the entire tree and to check at each node the 
admissibility of the partial stacking sequence constituted by the branch going from the root to 
the current node. If the partial sequence violates the constraint, then the entire sub tree derived 
from the current node is eliminated from the enumeration tree. This pruning technique 
reduces considerably the size of the tree and makes the enumeration efficient.  
For example in Figure, all the sub-sequences starting with (-45, 45), (0, 90), (45, -45) and (90, 
0) are eliminated from the tree because they violate the 90° gap rule. The leaves of the tree are 
only the admissible sequences. The optimization algorithm is based on the backtracking 
procedure with a local search one. For more information, see [3]. 
 
 

 
 

Figure 2. The enumeration tree. 
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5 The numerical algorithm 
We define the following optimization problem: 
 

max
�,�

���, �� 

�. �.		� ∈ ����, 
 
where S is the angle sequence of the thickest region and D is the ply drop-offs. F is some 
objective function. At each iteration k, (Sk,Dk) are updated to (Sk+1,Dk+1) such that Sk+1 is 
admissible with respect to Dk+1. This task is performed in two steps (see Figure 3). First, Dk is 
fixed and Sk is updated. Following the definition of neighborhoods in section 3 and for some 
integer d0, a set of admissible random sequences is generated in ��0������, the neighborhood of 
Sk that comply with Dk. F is computed for all the sequences of the set. Then, Sk+1 is assigned 
to the element of the set that has the highest value of F since F must be maximized. Next, a set 
of admissible random drop-offs schemes is generated in	��0���1����, the neighborhood of Dk for 
which Sk+1 is admissible. F is computed for all the sequences of the set. Then, Dk+1 is set to 
the element of this set that has the highest value of F. The operation of generating random 
elements in the neighborhood of the current iteration is called local search and it relies on the 
backtracking procedure described in the previous section.  
 
 

 
 

Figure 3. Illustration of the two steps to update (S,D) at each iteration. 
 
 
The function F in (1) can be the buckling load of the composite structure or any other 
function, such as the one presented in the next section.  
 
6 Definition of the degree of difference between two panels 
Consider the stacking sequences S1 and S2 with a different number of plies. The Levenshtein 
distance between S1 and S2 gives the degree of difference between these two stacking 
sequences. It is the number of operations needed to transform S1 into S2. The operations are 
insert, delete and replace. For example, let S1=(-45,0,45,90) and S2=(0,0,45,0,90). The 
distance between S1 and S2 is 2 because the -45 is replaced by 0 and a 0 is inserted before the 
90. This distance gives an idea on how much S1 is different from S2. If S1=S2, then the 
distance between them is zero. This notion of distance is generalized to the distance between 
panels. If two panels  are composed of the same number of regions N and their stacking 
sequences are defined by (S1,D1) and (S2,D2), the distance between these two panels is the 
sum over the regions, of the distances between the two stacking sequences of the two panels. 
Note that if the two panels have the same number of plies per region, the distance between 
them is zero.  
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7 Numerical example 
The numerical example consists in considering a "panel1" with defined thicknesses and 
stacking sequences, and a "panel2" with known thicknesses only. The goal of the optimization 
is to find the stacking sequences of panel2 which satisfy the design rules and which are the 
most similar to the ones of panel1. Thus, panel2 will have a mechanical behavior quite similar 
to the one of panel1, but with different thicknesses. The similarity between sequences is 
defined as the Levenshtein distance described in section 5. The goal is then to minimize the 
number of operations explained in section 5 that are necessary to go from the stacking 
sequences of panel1 to the ones of panel2.  
 
Consider the following two panels composed of 8x6 regions. Thicknesses of the regions in 
number of plies in each panel are the following: 
 
 

35/34 35/34 28/28 28/28 26/26 24/24 22/24 20/20 
35/34 35/34 28/28 26/26 24/24 24/24 22/24 20/20 
35/34 28/28 28/28 26/26 24/24 24/24 18/30 18/30 
35/34 28/28 26/26 26/26 24/24 24/24 18/30 18/30 
35/34 28/28 26/26 26/26 24/24 24/24 18/30 18/30 
35/34 28/28 26/26 26/26 24/24 24/24 18/30 18/30 

 
Figure 4. Panel with two sets of thicknesses 

 
The percentages of 20% of -45°, 50% of 0°, 20% of 45° and 10% of 90° are imposed to the 
number of plies in each region. The staking sequences of the first panel are illustrated in 
Figure 5. The columns in grey give the optimal stacking sequences for the number of plies 
corresponding to the different regions of panel1.  
 
 

 
 

Figure 5. The stacking sequences of the first panel. 
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The optimization problem consists in finding the stacking sequences that comply with the 
thicknesses of the second panel and that minimize the "distance" between the two panels. The 
proposed algorithm is used with the distance function as an objective function. The evolution 
of the distance function with respect to the number of iterations is shown in Figure 6 and the 
optimal (S,D) are shown in Figure 7. In Figure 6, it is seen that starting with a distance of 
about 500, an optimum solution is obtained with around 150 operations needed between both 
panels. One can see that the proposed algorithm is able to solve efficiently this optimization 
problem by generating stacking sequences that satisfy the constraints at each iteration.  
 
 

 
 

Figure 5. The Levenshtein distance with respect to the number of iterations. 
 
 
8 Conclusions 
In this paper, a combinatorial optimization method was proposed to find the optimal stacking 
sequence and the ply drop-offs scheme of a blended composite structure. Based on prescribed 
thicknesses in each region of the panel, the method can handle efficiently design and 
manufacturing rules which are of combinatorial type. The optimization problem was 
formulated as a constrained binary programming problem and it was solved by applying both 
a primal and dual backtracking procedures with a local search method. The efficiency of the 
method was demonstrated on an application.  
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Figure 6. The optimal stacking sequences of the second panel. 
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