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Abstract  

Most modern cruise ships include outdoor steel swimming pools that are one of the most 

attractive facilities on board to capture the customers interest. Composite pools are currently 

being considered to avoid corrosion problems typically arising when adopting steel 

structures. In this frame, a study was conducted to optimize a composite pool to lighten the 

ship super-structure. A non-linear finite element model of a composite pool was developed. 

Based on this model, an optimization process was performed to determine the geometrical 

parameters achieving a minimal weight while reducing the maximal vertical deflections of the 

pool bottom side. In order to limit the computational effort necessary to deal with three 

objectives and ten constrained design variables, an approach based on meta-modeling was 

proposed, significantly reducing the total computational time. 

 

 

1 Introduction 

Multi-objective optimization (MOO) is a powerful tool to help designers to identify improved 

configurations optimizing multiple targets simultaneously. Differently from single-objective 

optimization (SOO), MOO identifies a set of optima characterized by different relative 

importance assigned to the various objectives. The set of optimal solutions is commonly 

named Pareto front.  

In industrial applications, global optimization tools are available and fairly well supported for 

conventional problems. Typically, global optimization programs implement gradient-based or 

evolutionary algorithms or a combination of these. Although being numerically cost-effective, 

gradient-based approaches show strong limitations when objective functions are noisy, non-

smooth or when derivatives are not directly available. Also, they get easily trapped by local 

optima, since their exploration capabilities of the search domain are limited. On the other 

hand, evolutionary algorithms (EA, i.e. genetic algorithms and others) have wider exploration 

capabilities but require a huge number of numerical evaluations making the optimization 

process numerically prohibitive. A widely-used optimization algorithm is the notorious 

particle swarm optimization (PSO) algorithm [1]. The original algorithm is an iterative, 

stochastic meta-heuristics imitating birds or fishes swarm movement rules. In its basic 

version, PSO is not able to deal with constraints on design variables, as required by real-world 

engineering problems. To bypass these limits and take advantage of the fast convergence 
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speed of PSO algorithms, modifications to the original version of the algorithm have been 

proposed including penalty functions to deal with constraints. When dealing with MOO, the 

evaluation of the entire Pareto front involves a much larger computational cost with respect to 

a SOO. In fact, the optimization process is repeated in MOO for each set of relative 

importance assigned to each of the objectives. The large number of function evaluations 

required by EAs combined with the redundancy of optimizations needed to face MOO, makes 

the optimization process unaffordable from a computational point of view. In these cases, a 

common choice is to introduce a surrogate model (SM) reproducing the more expensive high-

fidelity model (HFM). SMs are able to supply approximations of the HFMs results of interest 

with a reduced numerical effort.  

In this work, the MOO of a swimming pool for cruise ships was performed using SMs. The 

pool consists of a sandwich structure, with a PVC core and a glass fibers reinforced epoxy 

resin skin, conveniently stiffened in specific areas with u-shaped reinforcement frames. 

 

2 Composite pool structure model description 

The considered swimming pool consists of a sandwich composite structure made up of a PVC 

closed cells core and skins composed of epoxy resin reinforced with glass fibers. The pool is 

connected with steel ship structures by bottom longitudinal and transversal composite frames. 

The pool structure is 10,340 mm long, 6,000 mm wide, 1,310÷1,975 mm deep, with a 

transversal frame spacing of 2,840 mm, while the transversal section of frames is 200x200 

mm. The geometry of the pool is shown in Figure 1.  

 
  

      Figure 1. Geometry of swimming pool. 

 

In this study the MARC/Mentat 2010.1.0 finite element (FE) software package developed by 

MSC was used to analyse the different configurations. Half structure was FE modeled (Figure 

2) taking advantage of the geometric and loading symmetry of the pool with respect to the 

vertical longitudinal plane (xz). 
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      Figure 2. F.E. model of swimming pool. 

 

The mesh implemented is composed of the number and type of shell elements specified in 

Table 1:  

 

Number Element Class Element Type 

14 TRIA (3) 138 

6,818 QUAD (4) 75 

Table 1. Class and type elements of the model. 

 

The composite structures of the pool were subdivided into four areas: bottom fore, side fore, 

bottom aft, side aft. The core and skin thicknesses of each area were subjected to the 

optimization process described in §3. Bottom longitudinal/transversal frames are constituted 

of a PVC core and a skin of 6 mm thicks for all the configurations analysed. 

GFRP and PVC were modelled as isotropic materials with the properties shown in Table 2. 

Sandwich laminates were modelled as layered materials. 

Mechanical properties GFRP PVC 

Young Modulus (MPa) 12,500 130 

Poissont coefficient 0.35 0.40 

Table 2. Material properties. 

 

A pressure load was applied on the wet surface of the pool and is represented as function of 

the z coordinate by the following equation: 

 

     )( 0zzgkP −   = ρ      (1) 

where the factor k is assumed to be equal to 1.5 in order to consider the vertical acceleration 

of the ship, ρ is the density of water, g is the acceleration of gravity, z0 is the coordinate of the 

top of the pool.  

Figure 3 shows the result of a preliminary non linear simulation implementing with the large 

strain option activated. In Figure 3, the most stressed structural areas of the pool were easily 

detected in the bottom of the pool itself. 

 



ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

4 

 

  

 Figure 3. Displacement and Equivalent Von Mises stress of the bottom layer. 

 

3 Optimization problem, methodologies and results 

The aim of the optimization process carried out in this work is to simultaneously minimize 

bottom deflection δ and weight (per unit of surface) W of the swimming pool by varying skin 

tS and core tC thicknesses of the various parts of the pool itself. The problem statement clearly 

refers to a MOO problem because of the contradiction between minimizing weight, which 

means minimizing the materials employed, and minimizing deflection meaning increasing 

thicknesses.  

In this work, two different approaches were used: 

• simplified model: the skin and core thicknesses were considered to be homogeneous 

all over the pool;  

• realistic model: different skin and core thicknesses were allowed to vary on different 

sides of the pool. 

3.1 Optimization using the simplified model 

Under the assumption that the different sides of the pool have all common values of skin and 

core thicknesses, the optimization problem was summarized by the following: 
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where a constraint is posed between skin tS and core tC thicknesses derived from maritime 

regulations [2] imposed by the Italian Maritime Authority (RINA) for composite sandwich 

laminates in ships design. 

In problem (2), the objective δ is calculated through a FE analysis while W is derived from 

the following simplified expression obtained by geometrical considerations: 
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where ρS=2500 Kg/m
3
 and ρC=100 Kg/m

3
 are, respectively, skin and core densities, C1 and C2 

are two numerical factors expressing a simplified linear dependence of the pool surface from 

the thickness.  

As defined by eqs. (2) and (3), the optimization problem is non-linear in the objective 

functions. 

In this work, a hybrid particle swarm optimization algorithm [3] was used to perform the MO 

process. A population size of 10 individuals was used to perform the PSO optimization with a 

maximum number of iterations set to 100. To avoid possible stagnation problems [4], a multi-

start approach was implemented re-initializing the swarm and re-running the optimization for 

10 times. A convergence criterion was also set in terms of difference in the objective between 

two successive iterations to prematurely stop the optimization in order to avoid unnecessary 

calculations.  

At the end of the MOO process, the optimal configurations were plotted in the design space 

domain and in the objectives space. 

 

 

      Figure 4. Pareto frontier in the design space (top) and objective domain (bottom). 

 

In Figure 4, letters from “A” to “N” identify different optimal configurations obtained varying 

the relative weight of the two objectives and are both represented in terms of design variables 

(Figure 4, top) and the corresponding objective functions values (Figure 4, bottom). The 

dotted line in Figure 4 (top) is the representation of the constraint expressed in eq. (2). Point 

“A” (bottom) in Figure 4 refers to an optimal layout in which the relative importance of the 

minimization of deflection δ is maximum and no importance is assigned to the weight 

increase. To achieve this condition, the optimizer increases the value of the (heavier) skin 

thickness tS while reducing those of the (lighter) core thickness tC. On the opposite, point “N” 

(bottom) in Figure 4 is relative to the condition in which the optimizer gives relevance only to 

the objective of weight minimization regardless the increase of the bottom deflection δ. To 

obtain this, the optimizer increases the (lighter) core thickness tC and decrease the (heavier) 

skin thickness tS. Points from “B” to “M” in Figure 1 describe intermediate optimal conditions 

in terms of relative importance between the two contradictory objectives. 
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3.2 Optimization using the realistic model 

The second approach takes into consideration a more realistic model of the pool in which each 

side of the pool may have a different thicknesses both for the skin layers and for the core. 

This, of course, leads to a significant increase in the number of design variables and, thus, in 

the optimization problem. In this case, the optimization problem is summarized by: 
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In this case, the expression of weight is more complicated than in eq. (3) being the sum of the 

contributions given by the aft bottom WAB, aft side WAS, fore bottom WFB, fore side WFS and 

flange WFL components: 

 

 FLFSFBASAB WWWWWW ++++=  (5) 

 

In this second and more realistic case, the following 10 design variables were considered 

(Table 3): 

 

Symbol Meaning 
tSAB Skin thickness aft bottom 

tCAB Core thickness aft bottom 

tSAS Skin thickness aft side 

tCAS Core thickness aft side 

tSFB Skin thickness fore bottom 

tCFB Core thickness fore bottom 

tSFS Skin thickness fore side 

tCFS Core thickness fore side 

tSFL Skin thickness flange 

tCFL Core thickness flange 

Table 3. Design variables explanation. 

 

The aim of the optimization is to minimize, at the same time, three objectives: the weight W, 

the bottom deflection on the aft side δA and on the fore side δF. A part from upper and lower 

bounds for the design variables, the minimization must take into consideration five constraints 

in terms of core thickness larger than six times the respective skin thickness [2] and two more 

constraints on the lateral displacement induced by the structural load on the side walls of the 

pool both on the fore and on the aft side. 

Before directly facing the optimization, some computational aspects were considered. A 

single FE simulation took about 132 seconds to run on an Intel Pentium 4, CPU 3.00 GHz, 
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1.00 GB of RAM. Supposing to use the same number of function evaluations as done for the 

first approach (§3.1), this would lead to about 64,000 FE calculations considering to vary the 

relative importance of the three objectives on only four different values (maximum, minimum 

and two intermediates). Considering the 132 seconds simulation time, this leads to about 88 

days to run the MOO. Such a computational time is not impossible to deal with but, of course, 

is not convenient and effective.  

To by-pass the problem of such a long CPU time for the optimization, a meta-model was built 

and used to perform the optimization. Borrowing concepts from the aerospace experience in 

deriving fast meta-models as surrogate of complex numerical calculations, the domain space 

was sampled to get 500 random points values of deflections δA and δF. These values were 

used to build a neural network that proved to be able to reproduce the FE results as faithfully 

as about 99%. So, after 16 hours taken to sample the domain and train the neural network, the 

optimization process was able to use a meta-model with a precision of about 99% with respect 

to the FE one, but taking only 4 seconds to run instead of 132 seconds.  

Running the optimization implementing the meta-model, 64 optimal configurations were 

found as represented by circles in Figure 5 in terms of optimal W, δA and δF. These 64 

configurations were then interpolated to plot the 3-D Pareto Frontier represented by the mesh 

in Figure 5. 

 

      Figure 5. Pareto frontier for the non-homogenous thicknesses over the pool. 

 

By the analysis of Figure 5, it is easy to notice that larger values in vertical deflections δA and 

δF correspond to less material used to sustain the structural loads and to smaller values of 

weight. On the contrary, if smaller deflections are desired, a larger amount of material is 

needed leading to an increase in structural weight.  

Representing the Pareto frontier in Figure 5 as a contour plot gives more information about 

the optimization. In Figure 6, the Pareto frontier is represented in the plane [δA, δF] and 

parameterized in terms of the weight W. In Figure 6, the lines of different colors connect 

optimal configurations characterized by different weights. Points closer to the top-right side of 

the plot have a larger weight than those on the left-bottom edge. Configurations closer to the 

top-right corner are also characterized by a larger gradient meaning that small changes in the 

deflections [δA, δF] imply large changes in the weight. On the contrary, on the opposite 

bottom-left corner, gradients are much smaller meaning that small changes in deflections give 

small changes in weight. Moreover, in the top-right area of the plot, a number of optimized 

configurations with minimal deflections are identifiable being the minimal deflection loci 
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when the weight varies. They correspond to the top-right point of each single iso-objective 

line.  

 

      Figure 6. Contour plot of the Pareto frontier. 

 

4 Conclusions 

In this work, starting from the development of a non-linear FE model of a composite 

swimming pool structure for cruise ships, a MOO was performed aimed to simultaneously 

minimize the weight and the bottom deflections subject to the acting loads. The MOO process 

identified the Pareto front which is useful to the designer to determine the best compromise 

layout to optimize the set of design variables giving more or less relative importance to one or 

another of the three considered objectives. 

After estimating the conspicuous numerical effort of directly facing the MOO, a SM was 

developed achieving a significant reduction in the computational time. By introducing the SM 

of the complete FE structural model of the pool, the MOO problem was solved in about 9 

days with 500 FE simulations instead of the estimated 88 days with about 64,000 FE runs. 
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