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Abstract 
A mechanical model is formulated to study delamination damage progression in laminated 
composite cylindrical shells subjected to dynamic loadings. The shell is modelled as an 
assembly of sub-shells joined by cohesive interfaces. The cohesive traction laws are defined 
as piecewise linear functions of the relative interfacial displacements and represent different 
physical mechanisms. By extending homogenization techniques formulated in the literature 
for intact shells and for shells with linearly elastic interfaces [1,2], the global displacement 
field is assumed to be piecewise linear in the thickness direction and incorporate jumps at the 
interfaces. The a priori imposition of interface continuity conditions then leads to a 
substantial reduction of the displacement unknown functions with respect to a classical 
discrete layer formulation, while its accuracy and efficacy in studying processes of dynamic 
delamination fracture are preserved .   

 
 

1 Introduction  
 
Current demand of laminate and sandwich composites in many challenging applications of the 
naval and aeronautical industries, where the structural components must withstand extreme 
loading conditions, highlights the need for a better understanding of the response of 
composite structures in the post-elastic regime, where different damage and failure 
mechanisms, may form, evolve and interact. Multiple delamination fracture at the layer 
interfaces is among the dominant failure mechanisms in laminated systems.  
 
This paper deals with the problem of delamination damage progression in laminated 
cylindrical shells subjected to dynamic loads. Mechanical modeling of the post-elastic 
response of these systems can be tackled using a discrete layer approach, which approximates 
the shell as an assemblage of sub-shells joined by cohesive interfaces. The cohesive interfaces 
describe different physical mechanisms: unfailed elastic interfaces, perfect adhesion of the 
layers, brittle and cohesive fracture and elastic contact. This approach has been previously 
applied by the author to study, through semi-analytic and numerical modeling, damage 
progression and interaction in plane laminated and sandwich systems; the effects of damage 
interaction on the mechanical response and different key properties, including energy 
absorption and damage tolerance, have been investigated and conclusions relevant to the 
optimal design of these material systems drawn in [3-5].  
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A discrete layer model is computationally expensive due to the large number of unknowns, 
which depends on the number N of layers used to model the structure: if First Order Shear 
Deformation Shell Theory is used to describe the response of the layers in a shell structure, 
the unknown displacement 2D functions are 5 × N. To overcome the disadvantages of the 
discrete-layer approach, while keeping its accuracy and efficacy in studying processes of 
dynamic delamination fracture, we maintain the description of the shell as an assemblage of 
sub-shells with cohesive interfaces and postulate a global displacement field which is 
piecewise linear in the thickness direction and incorporates jumps at the layer interfaces. An 
homogenization technique is then applied by imposing a priori interface continuity conditions 
for shear and normal tractions and the constitutive laws of the cohesive interfaces. The 
number of unknowns of the problem gets substantially reduced and become independent of 
the number of sub-shells. The model extends the formulations originally proposed for intact 
shells in [1] and for shells with linearly elastic interfaces in [2].  By describing the cohesive 
tractions as piecewise linear functions of the relative displacements at the interfaces between 
sub-shells, the model can be used to investigate multiple delamination growth in the presence 
of openings or elastic contact along the delamination surfaces. 
 
 
2 Mechanical Model  
 
Consider a laminated composite cylindrical shell, with mean radius of curvature Rβ  and 
thickness h  subjected to a time dependent distributed load ( )p t  (Fig. 1). A system of 
curvilinear and orthogonal coordinates ,  and zα β  is introduced, with the axis α  parallel to 
the generator of the shell and the axis z  normal to its mid-surface and measured from it. The 

length of  an infinitesimal element of the shell at the coordinate z is  ( )( ) 1d z z R dββ β= + . 

The displacement components of an arbitrary point of the shell at the coordinates ( , , zα β ) are 
vα , vβ  and w . 
 
The shell is modelled as an assemblage of N  sub-shells. The sub-shell k, where the index 

1,..,k N=  is numbered from bottom to top, is defined by the coordinates kz and 1kz + , has 

thickness ( )k h , mean radius of curvature ( )k c
kR R zβ β= + , with 1( ) / 2c

k k kz z z += +  the 
coordinate of its centroid, and unit moment of inertia  with respect to its central axis of inertia 
parallel to the generator, kI  (Fig. 1, inset). Each sub-shell is linearly elastic, globally 
homogeneous and transversally isotropic, with principal material axes not necessarily 
coincident with the geometrical axes of the structure α β− . The mass density is uniform and 
equal to mρ .  

 
The sub-shells are joined by 1n N= −  cohesive interfaces which define all actual and 
potential delamination surfaces. Normal, k

NT , and shear, kTα  and kTβ , tractions act along the 
surfaces of the sub-shells k and k+1 at the interface k. They may represent interfacial tractions 
in the intact portion of the beam, or contact, friction and cohesive/bridging tractions acting 
along the surfaces of open interfaces (delaminations); they also describe externally applied 
loads acting on the shell surfaces, for sub-shells k =1 and k = n+1. The interface tractions are 
related to the interfacial relative displacements (jumps), ˆ kw , ˆkvα  and ˆkvβ  by cohesive traction 
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laws that are defined with different possible features representing different physical 
mechanisms. The relative displacements are: 
 
 

( 1) ( ) ( 1) ( ) ( 1) ( )ˆ ˆ ˆ( ) ( ),    ( ) ( ),    ( ) ( )α α α β β β
+ + += − = − = −k k k k k k k k k k k k k k kw w z w z v v z v z v v z v z  (1a,b,c) 

 
The interface laws are defined as piecewise linear functions with: 
 

ˆ ˆˆ    with    C ;   
ˆ ˆ ˆ ˆ

k k k k k k
k k k k k kNB NA NB A NA B

N N N N Nk k k k
B A B A

T T T w T wT C w c c
w w w w

− −
= − + = =

− −
 (2a,b,c) 

ˆ ˆˆ    with    C ;   
ˆ ˆ ˆ ˆ

k k k k k k
k k k k k kB A B A A B

k k k k
B A B A

T T T v T vT C v c c
v v v v

α α α α α α
α α α α α α

α α α α

− −
= − + = =

− −
 

ˆ ˆ
ˆ    with    C ;   

ˆ ˆ ˆ ˆ

k k k k k k
B A B A A Bk k k k k k

k k k k
B A B A

T T T v T v
T C v c c

v v v v
β β β β β β

β β β β β β
β β β β

− −
= − + = =

− −
 

 
the equations of an arbitrary branch of the functions between points A and B (inset of Fig. 1). 
For instance, an unfailed interface, which is used in the model to describe perfect adhesion 
between sub-shells   is described by a single branch, with , 0 k k

Nc cα = and 
ˆ ˆ ˆC ,  C  and  Ck k k k k k k k k

N NB B B B B BT w T v T vα α α β β β= = = chosen to be very high to minimize errors due 
to the introduction of fictitious compliant surfaces in the body. A weak elastic interface [2] is 
described similarly with lower values of  C , C  and Ck k k

N α β . In cohesive fracture the initial 
branch of the unfailed interface is followed by a second branch, which may be hardening or 
softening depending on the cohesive/bridging mechanisms acting along the crack faces. 
 
The approximate displacement field is defined as: 
 

( )

( )

0

1 1 1

0

1 1

( , , , ) , ( , )

ˆ ˆ( , )( ) ( , ) ( , )

( , , , ) , ( , )

ˆ( , )( ) ( , )

n nc nd
k k k i i j j

c d
k i j

n nc
k k k i i

c
k i

v z t v z

z z H v H v H

v z t v z

z z H v H

α α α

α α α

β β β

β β

α β α β ϕ α β

α β α β α β

α β α β ϕ α β

α β α β

= = =

= =

= + +

+ Ω − + +

= + +

+ Ω − + +

∑ ∑ ∑

∑ ∑

                     

                     

( )
1

0

1 1 1

ˆ ( , )

( , , , ) , ( , )

ˆ ˆ( , )( ) ( , ) ( , )

nd
j j
d

j

z

n nc nd
k k k i i j j
z c d

k i j

v H

w z t w z

z z H w H w H

β α β

α β α β ϕ α β

α β α β α β

=

= = =

= + +

+ Ω − + +

∑

∑ ∑ ∑

 

                       (3a,b,c) 
 
where vα , vβ  and w  are the displacement components of an arbitrary point of the shell. The 
terms on the right hand side of Eqs. (3a,b,c) denote different contributions in the displacement 
representation: 0vα , 0vβ  and 0w  are the displacement components of the reference surface of 
the shell and αϕ  and βϕ the rotations of the normal to the reference surface (standard first 
order shear deformation shell theory contributions); zϕ  is the deformation in the transverse 
normal direction, needed to capture the effect of transverse normal compressibility; the third 
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terms, with summations on the total number n of interfaces and 
{ }( ) 0, ;1,    k k k kH H z z z z z z= − = < ≥ , supply the zig-zag contributions, which are 

continuous in z but with jumps in the first derivatives at the interfaces ( 0
zC ) and are necessary 

to satisfy continuity of normal and shear tractions at the interfaces; the fourth terms, with 
summations on the number of cohesive interfaces nc, supply the contribution of the relative 
displacements (jumps) at the cohesive interfaces, while the fifth terms the relative 
displacement jumps at the traction free delaminations nd, where n = nc+nd. The displacement 
field defined in Eqs. (3,a,b,c) is piecewise linear in the z direction with jumps at the cohesive 
or traction free interfaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Cross-sectional view (perpendicular to the generator) of the laminated cylindrical shell subjected to a 
time dependent load; the shell is modeled as an assemblage of sub-shells joined by cohesive/contact interfaces. 

Inset: interfacial tractions acting on upper and lower surfaces of sub-shell k and exemplary cohesive traction law.  
 
 
The transverse shear and normal strain components at the arbitrary coordinate z of the shell 
within sub-shell k are derived from the displacement field through the strain-displacement 
relations for Gaussian curvilinear coordinates: 
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1
( )

1
ε ϕ

−

=
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k

k j j
zz z z

j
H  

 
As for the displacement field, the strain components are given by the superposition of 
different contributions: those characteristic of an extended first order shear deformation 
theory (which includes transverse compressibility), which depend on the displacement 
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components of the reference surface; those characteristic of zig-zag approximations of the 
displacement field, with a continuous piecewise variation from layer to layer, which depends 
on the functions ( , )k

α α βΩ , ( , )k
β α βΩ  and ( , )k

z α βΩ ; and those related to the cohesive and 
traction free interfaces, which depend on the displacement jumps. 
 
The unknown 2D functions ( , )k

α α βΩ , ( , )k
β α βΩ  and ( , )k

z α βΩ  in the displacement equations 
(3,a,b,c) are determined as functions of the displacements of the reference surface by 
satisfying continuity conditions for shear and normal tractions across the laminate interfaces: 
 
( ) ( 1)

( ) ( 1)

( ) ( 1)

( ) ( ),

( ) ( ),

( ) ( ),

k k k k
z z

k k k k
z z

k k k k
zz zz

z z

z z

z z

α α

β β

σ σ

σ σ

σ σ

+

+

+

=

=

=

 (5,a,b,c) 

 
where the stresses in the sub-shells are defined through the linearly elastic constitutive 
equations of each sub-shell, ( ) ( ) ( )k k k=σ C ε , as functions of the strain components. The 
function ( , )k

z α βΩ , for instance, is directly determined from Eq. (5c) by assuming that the 
effect of αβε  on zzσ  is negligible with respect to that of zzε , as suggested in [2]: 
  
 

( )
(1) (1) 33

33 33( 1) ( ) ( 1) ( )
33 33 33 33

1 1( , )
k

k
z z zk k k k

CC C
C C C C

α β ϕ ϕ+ +

⎛ ⎞ ⎛ ⎞Δ
Ω = − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (6) 

 
The function ( , )k

z α βΩ , as well as ( , )k
α α βΩ  and  ( , )k

β α βΩ , becomes zero if the elastic 
constants of the sub-shell k and k+1 are the same, since no zig-zag contribution in the 
displacement is then needed to satisfy continuity conditions for the normal and shear tractions 
at the interfaces.  
 
Once the functions ( , )k

α α βΩ , ( , )k
β α βΩ  and ( , )k

z α βΩ  have been defined in terms of the 
displacement unknowns and material and geometrical properties, the relative displacements at 
each cohesive interface, ˆ kw , ˆkvα  and ˆkvβ  for k =1...nc, are defined as functions of the 
transverse shear and normal strains at the interfaces, Eq. 4, through the cohesive traction laws, 
Eq. (2a,b,c), and the constitutive equations of the sub-shells surrounding the interface.  
 
Based on the procedure described above, the displacement field is then defined in terms of 
only 6  unknowns, which are 0 0 0, , , ,  and zv v wα α β βϕ ϕ ϕ . The unknowns increase by 3nd, 

namely ˆ kw , ˆkvα  and ˆkvβ  for k =1...nd, if traction free delaminations are present in the shell or 
if they are not treated as cohesive interfaces. 
 
Work is in progress on the derivation of the equations of motion and the boundary conditions 
of the shell through the Hamilton principle ([1,2]). The problem will then be solved under 
general loading conditions using a discretization and an iterative approach, which assumes an 
initial state for the cohesive interfaces at the coordinate ,  α β and iterate until convergence is 
reached on interfacial displacements and tractions. 
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3 Conclusions 

A model is formulated to study delamination damage progression in laminated composite 
shells subjected to dynamic loadings. The model describes the shell as an assemblage of sub-
shell joined by cohesive interfaces as it is typically done in discrete layer formulations to 
study static and dynamic delamination fracture in beams and plates. Discrete layer 
formulations accurately describe the response of the system and are very convenient to study 
processes of dynamic delamination fracture. However, they are computationally expensive 
since the number of unknowns depend on the number of layers used to describe the system. In 
this paper a homogenization technique is applied, which assumes the global displacement 
field as piecewise linear in the thickness direction with jumps at the interfaces, and imposes a 
priori continuity conditions on shear and normal tractions at the interfaces to reduce the 
number of displacements unknowns of the problem. Following this approach, the unknows 
become independent of the number of sub-shells.  Work is in progress on the derivation of the 
equations of motion and boundary conditions of the shell through the application of Hamilton 
principle of elastokinetics.  
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