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Abstract 
A second-order computational homogenization procedure for heterogeneous materials with 
periodic microstructure is applied to the analysis of a layered strip with damaging interface 
subjected to simple shear. The second gradient model is applied in a strain localization 
analysis and localization limiters depending on the geometry and mechanical parameters of 
the layered material are obtained. 

 
 

1 Introduction 
In multi-scale description of materials with complex microstructure, classical homogenization 
approaches may have disadvantages and non-local constitutive models may be necessary to 
include material length scales into the constitutive relations in order to take into account the 
size of the micro-components and the effects of high stress and strain gradients and to prevent 
pathological localizations related to the strain-softening constitutive assumption for 
components or interfaces in the microstructure. Although many non-local constitutive 
equations are either purely phenomenological or only implicitly incorporate the presence of 
the underlying microstructure, higher-order computational homogenization techniques seem 
to be efficient tools to derive micromechanically based non-local constitutive equations [1]. 
A second-order computational homogenization procedure for heterogeneous materials with 
periodic microstructure has been recently proposed by the Authors [2,3], that consists of a two 
steps analysis of the periodic unit cell with properly prescribed boundary conditions. This 
approach derives from a multi-scale kinematics with a high-continuity representation of the 
micro-displacement field as superposition of a local macroscopic displacement field, 
expressed in a polynomial form linearly depending on the macro-strain components, and an 
unknown micro-fluctuation field accounting for the effects of the heterogeneities. The latter 
contribution is represented as the superposition of two unknown functions each of which 
related to the first-order and to the second-order strain, respectively. This kinematical micro-
macro framework guarantees that the micro-displacement field is continuous across the 
interfaces between adjacent unit cells and implies a computationally efficient procedure that 
applies in two steps. 
This methodology is here applied to the analysis of simple shear of a layered strip with 
boundary constraints. The boundary are orthogonal to the layers, which are assumed to be 
elastic and with equal thickness but different elastic moduli and interconnected through 
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elasto-damaging interfaces having linear response in the post-peak phase. A relative 
displacement normal to the layers is applied to the boundaries so that a one-dimensional 
problem is obtained. From the second-order homogenization procedure applied to the layered 
material, the elastic and tangent moduli of the second order continuum are derived. Moreover, 
through a localization of the stress field at the microscale, the transition from the elastic 
regime to the inelastic one at the interface is controlled. The solution of the resulting 
incremental problem is obtained according to the boundary conditions on the displacement 
components along the layer direction. The solutions and the influence of the constitutive 
parameters and of the internal length are analyzed and discussed with reference to strain 
localization effects. 
 
2 Shear strain of a layered body with soft interfaces 
Let us consider a layered body obtained as an unbounded 2d -periodic arrangement of two 
different layers having thickness a  and b  (here 2d a b= +  is defined), respectively, and 
length L as shown in Figure 1. The phases are assumed to be isotropic with elastic moduli 
( ),a aE ν  and ( ),b bE ν , respectively. The shear response of the thin interface connecting the 
adjacent layers is represented in terms of the resolved shear stress 12=τ σ  and the 
corresponding tangent component 1u  of the displacement jump according to a rigid-

softening constitutive a . The interface response is rigid until ∗≤τ τ , ∗τ  being the initial limit 
shear strength of the interface. Once attained this limit value, the damage process takes place 
in the interface with residual shear strength linearly depending through the softening 
parameter ( )0h <  on the displacement jump 1u . The ultimate displacement jump u∗  is 

defined as a further constitutive parameter, that depends on the damage energy 1
2

u∗ ∗ ∗= τG . 

Moreover, in the softening phase an elastic unloading is considered for 1 0u < . The obtained 
heterogeneous model is firstly considered as a Cauchy continuum under the assumption of 
small strains. 
 

 

Figure 1. (a) Unbounded periodic layered body; (b) unit cell. 
 

The shear strain in the layered body is analysed with reference to periodic boundary 
conditions prescribed on the bases 1 0x =  and 1x L=  and neglecting body forces. The overall 
shear is obtained by prescribing a vanishing average displacement at the left base 
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( )2 20, 0u x = , being ( ) ( )
2

1 2 1 2 2
2 0

1, ,
d

g x x g x x dx
d

= ∫ , and  a monotonically increasing 

average displacement ( )2 2,u L x = ∆  (the ratio L∆  measuring the overall shear strain in the 
body). At both the bases a vanishing average displacement is prescribed for the component 

1 0u = , with warping allowed, so that an homogeneous stress field in the body is obtained in 
the first phase of the process when the elastic regimes takes place. Here the 2d -periodic 
solution is considered, namely ( ) ( )1 2 2 1 2, ,x x d x x+ =u u  and ( ) ( )1 2 2 1 2, ,x x d x x+ =σ σ , where  
u  and σ  are the displacement vector and the stress tensor. In the elastic phase the stress field 
is homogeneous with increasing ∆  up to the limit state ∗=τ τ  that is attained simultaneously 
at each point of the interface. Increasing the prescribed displacement a localization process of 
the shearing strain takes place, which is the subject of the present analysis.  
The solution of this fine-scale problem is computationally expensive so that it is convenient to 
replace the heterogeneous model here considered with an equivalent homogeneous one to 
obtain equations whose coefficients are not rapidly oscillating while their solutions are close 
to those of the original equations. This issue is analysed with reference to the second gradient 
homogenization which provides constitutive equations equipped with internal lengths as it is 
shown in the following. 
 
3 Second gradient homogenization of the layered material 
Let consider the second gradient homogeneous model that is assumed equivalent to the 
layered model presented in the previous Section. The macro-displacement field is represented 
by the displacement components of the periodic cell centered at position x shown in figure 
1.b. From the boundary conditions prescribed on the heterogeneous model it follows that the 
only non vanishing displacement component is ( )2 1 2U x u=

x
, which is independent on 2x .  

The macro-strain field is represented by the non-vanishing component of the displacement 
gradient tensor 21 2,1H U= , and the strain and rotation tensor 21 21 2,1 / 2E U= Ω = , respectively, 
while the non-vanishing component of the second gradient of the displacement is 

2 2
211 2 1U x= ∂ ∂κ  (see for reference Mindlin [4] and Germain [5]). 

The internal forces are represented by the corresponding components of the first order 
symmetric stress tensor 21 12Σ = Σ  and the components of the second-order stress tensor 211µ  
and 121µ . As the material is stratified, the costitutive equations for both the elastic and the 
incremental inelastic phase are orthotropic with uncoupled response 21 2121 212C EΣ = , 

211 211211 211Sµ = κ  and 121 121211 211Sµ = κ , where 2121C , 211211S  and 121211S  are the elastic moduli 
(or inelastic tangent moduli). Both the constitutive moduli and the stress components are 
independent on 2x  because the 2d -periodicity of the material, while they may depend on 1x  
as an effect of the inelastic constitutive response of the interface. Moreover, the non-vanishing 
components of the real stress tensor  are ( )21 21 211,1 1212 12 211211 211 ,1

2T C E S= Σ − = −µ κ  and 

( )12 21 121,1 1212 12 121211 211 ,1
2T C E S= Σ − = −µ κ  and the equilibrium equation , 0ij jT =  for the case 

of vanishing body forces is written in the form 21,1 21,1 211,11 0T = Σ − =µ . By substitution of the 
compatibility and constitutive equations, the field equation takes the form 
 
   ( )1212 2,1 211211 2,11 21,1

C U S U T const− = =   ,    (1) 
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where the real stress along the specimen is constant.  
 

 
Figure 2. First order shear deformation of the periodic cell with damaged interface 

( 21H  and 211 0=κ  prescribed). 
 

 
Figure 3(a) Second order prescribed displacements at the boundary 1C  with damaged interface ( 21 0H =  and 

211κ  prescribed); (b) Strain and stress field in the cell for 1 0d → . 

 
To obtain the costitutive moduli of the second grade continuum together with the macro-strain 
and macro-stress components which are relevant to the study of the layered material, the two-
scales kinematics are related through a downscaling of the kinematics from the macroscale to 
the microscale, according to the methodology proposed in [2]. For the specific problem here 
considered it may be shown that the downscaling is represented in the form  
 

   
( )1 2

1 121 21 211 1 1211 211

2 2
2 2 21 1 211 1 2211 211

1
2

u H z

u U H z z

⎧ = + +
⎪
⎨

= + + +⎪⎩

ϑ κ ϑ κ

κ ϑ κ
 ,   (2) 

where the macro-kinematical descriptors 2 21 211,  ,  U H κ  are prescribed and the functions 
1 2 2
121 1211 2211,  ,  ϑ ϑ ϑ  represent the micro-fluctuation field related to the macro-strains 21H  and 
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211κ , respectively. Once obtained these microfluctuation functions, by an application of the 
Hill-Mandel macro-homogeneity criterion the constitutive moduli may be obtained together 
with the stress field. By considering the ratios characterizing the model parameters a bζ = , 

a br G G=  and  2 aG
ha

δ = , the constitutive moduli and the shear stress acting on the layer 

interface are given in the following. 
 
Undamaged interface – elastic moduli and interface shear stress 
• First order  homogenization 

1212
1

aC G
r

+ ζ
=
ζ +

   ;   21
12 aG E

r
+ ζ

=
ζ +

τ . 

• Second order homogenization 

( ) ( ) ( )
22

211
211211

211

11 1
6 1

a
a b

G a rS r
r r

⎛ ⎞−
= = ζ + + +⎡ ⎤ ⎜ ⎟⎣ ⎦+ ζ + ζ⎝ ⎠

µ ν ν
κ

 ; 0=τ . 

 
Damaged interface -tangent moduli and interface shear stress rate 
• First order  homogenization 

( )1212
1

1
t

aC G
r

ζ +
=

ζ δ + +
;  

( ) 21
1

1aG E
r

ζ +
τ = 2

ζ ζ + +
. 

• Second order homogenization 

( ) ( ) ( ) ( ) ( )

2 22
211

211211
211

1 1 11 1
6 1 1 1

t a
a b

G a r rS
r r r

µ δζ δζ ν ν
κ ζ δ ζ δ ζ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ − − +⎢ ⎥= = + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + + +⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 ; 0=τ . 

 

4 Shear strain localization in the layered solid 
Let consider now the homogeneous continuum equivalent to the heterogeneous one described 
in Section 2.  The boundary condition applied to the macro-displacement, strain and stresses 
are deduced from those ones applied at the micro-scale and are given in the following form 

( )2 1 0 0,U x = =  ( )211 1 0 0,x = =µ  ( )2 1 ,U x L= = ∆  ( )211 1 0x L= =µ  namely fixed 
displacement at one base and prescribed monotonically increasing displacement ∆  with zero 
second order stress components. In the first phase for *τ < τ  the field equation (1) takes the 

form 2,1111 2,112

1 0
λ

U U− = , with 211211

1212

λ S
C

=  characteristic length of the elastic layered 

material, and the solution is the classical homogeneous one. The displacement gradient and 
the first order stress field are homogeneous along the body with vanishing second gradient of 
the displacement and second order stresses. The real stress equals the tangential stress at the 
interfaces obtained by down-scaling from the homogeneous model. Accordingly, the limit 
state *τ = τ  is obtained for * *

21 1212H C=τ  and then for * *
21H L∆ =  the limit state is attained at 

each point of the interfaces. At this point the localization of inelastic strain takes place as a 
consequence of the softening assumption for the interface and may be analysed according the 
approach proposed by Chambon et al. [6,7]. 
The incremental response in the localization analysis is obtained by assuming a lateral portion 
of the strip of length e  undergoing elastic deformation and a complementary portion of 
length  d eL= −  undergoing inelastic strain rates. The resulting displacement gradient 
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along the strip results: *
21 21 1,  0 eH H x< ∀ ≤ ≤  (i.e 21 10  0 eH x< ∀ ≤ ≤ ); 

*
21 21 1,  eH H x L≥ ∀ ≤ ≤  (i.e 21 10  0 eH x> ∀ ≤ ≤ ). 

The equilibrium equation in the strip are written in incremental forms in terms of the 
displacement component 2U  

 

    
2,1111 2,11 12

2,1111 2,11 12

1 0,        0
λ
1 0,       
λ

e

e
d

U U x

U U x L

− = ≤ ≤

+ = ≤ ≤
    (4) 

 

where 211211

1212

λ
t

d t

S
C

= −  is the characteristic length of the damaged layered material. The 

solution is written in the form 
 

 
( ) ( )
( ) ( )

2 1 1 1 1
2

2 1 1 1 1

cosh λ sinh λ ,         0
cos λ sin λ ,         

e
e e e e e

d
d d d d d d e

U A B x C x D x x
U

U A B x C x D x x L
⎧ = + + + ≤ ≤⎪= ⎨ = + + + ≤ ≤⎪⎩

  (5) 

 
where the eight unknown constants are obtained by imposing the four boundary conditions at 
the strip ends and the continuity conditions at the point separating the elastic and the damaged 
portion where the shear stress at the interface takes the limit value *τ = τ  
 

( ) ( )2 1 2 1 ,e d
e eU x U x= = =  ( ) ( )21 1 21 1 0,e d

e eH x H x= = = =   

( ) ( )211 1 211 1 ,e d
e ex x= = =µ µ  ( ) ( )21 1 21 1 .e d

e eT x T x= = =  
 
The extension d  of the region where inelastic deformation is localized is obtained as the 
solution of equation  
 

  sinh cos λ λ cosh sin 0
λ λ λ λ

d d d d
d

d d

L L⎛ ⎞ ⎛ ⎞− −⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

   (6) 

 
and is independent on the prescribed displacement ∆ . In fact, the assumed linear response of 
the softening phase makes the overall response of the post-localization of the strip  linear with 
respect to the imposed displacement ∆  and the real stress takes the form 
 

( )
1212 1212* *

21 1212

cosh sinh cos cosh
λ λ λ λ

,

t e e d e

d
d

C C
T C

L L

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∆ ∆ −∆⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠∆ = −
Λ

 (7) 

  
where  

 

2
1212

2
1212

λ cos 1 cosh cosh sinh 1
λ λ λ λ λ

λ   cosh cosh sinh sin cos .
λ λ λ λ λ λ

t d e e e e

d

d e e e d d d

d d d

C
L

C
L

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞Λ = − + − +⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 (8) 
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From an analysis of the influence of the model parameters on the solution of equation (6) it 
may be shown that the extension of the strip where the inelastic strain localizes is limited with 
respect to realist lengths of the specimen. This result seems to substantiate this model in 
consideration of the criticisms by Jirásek and Rolshoven [8,9] regarding the approach 
proposed by Chambon et al. [6,7]. 
 
5 Numerical example 
The layered material is assumed having layers of equal thickness 5 mma =  ( )1=ζ  and  the 
strip length is assumed 20L a = . The elastic properties are 833.3 MPaaG = , 2 41r .= , 

0.2a =ν , 0.3b =ν , while the interface parameters are * 4.9 MPa=τ , 31 N mmh = − , 

33 3.= −δ . The limit displacement gradient is *
21 0.01H = . The elastic moduli of the 

equivalent second order model are  1212 489.13 MPa,C =  2
211211 5.15 MPa cmS = , with 

characteristic length 1 02 mm.λ = , while the tangent moduli obtained in case of damaged 
interface are 1212 55.69 MPa,tC = −  2

211211 36.34 MPa cmtS =  with characteristic length 
8 01 mmd .λ = .  

From the strain localization analysis described in the previous Section the length 4 87d . a=  
of the damaged portion of the strip is obtained by solving equation (6). In the diagrams of 
figure 4 the overall model response is represented in terms of non-dimensional real stress 

21 1212T C  versus imposed displacement L∆  for different values of the strip lengths L a . 
These diagrams show a post peak linear response and an increase of the brittleness is observed 
for increasing the ratio L a .  

 

 
 

Figure 4. Model response in terms of non-dimensional real stress and prescribed displacement for different 
values at the L a . 

 
The strain localization process is shown in the diagrams of figure 5.a where the displacement 
gradient is represented along the strip for increasing values of the ratio * 1∆ ∆ ≥ . After 
reaching the limit state * 1∆ ∆ = , in the elastic region (in red) the displacement gradient 
decreases together with the elastic shear stress in the interfaces; in the damaged region high 
displacement gradients take place. At the point 1 ex =  a discontinuity in the second gradient 
of the displacement field is obtained as a consequence of the different second order moduli 
obtained from the elastic and damaged constitutive model. Finally, the corresponding 
displacement field is shown in the diagrams of figure 5.b.  
 

21 1212T C

40L a = 30 20 10

L∆
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Figure 5. (a) Post-localization displacement gradient for varying prescribed 

displacement; (b) corresponding displacement field. 
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