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Abstract 

In this study vibration-based delamination detection is achieved using artificial immune 

system (AIS) method. The approach is based upon mimicking immune recognition 

mechanisms that possess features such as adaptation, evolution, and immune learning. The 

delamination location and length in composite beam identified as an optimization problem. 

The cost function based on differences between analytical or experimental natural frequencies 

and predicted natural frequencies by AIS method. Analytical natural frequencies of 

delaminated beam obtained from Euler-Bernoulli beam theory with constrained delamination 

mode. Errors of predicted location and length are 2.16% and 0.1968% respectively, using the 

AIS algorithm. To investigate the accuracy of the proposed method some experimental results 

were extracted. A laser vibrometer used to found out natural frequencies change in 

delaminated CFRP composite beam case study. The average values of location and length 

errors are 18.7% and 9.8% respectively, between AIS method and experiment.  
 

1. Introduction  

 Damage detection in composite structures is an important because of their increasingly use 

in the construction of aerospace, civil, marine, automotive and other high performance 

structures. Delamination is one of the major damage modes in laminated composites due to 

their weak interlaminar strength. Delaminations may arise during fabrication or service-

induced strains, such as incomplete wetting, air entrapment, impact of foreign objects, 

exposure to unusual level of excitation, etc [1]. Delaminations are embedded within the 

composite structures so they may not be visible or barely visible on the surface but they can 

reduce stiffness and strength of the structures [2]. Damage detection in structures is one of the 

common topics that have received growing interest in research communities [3]. While a 

number of damage detection and localization methods have been proposed in this paper, a 

novel damage diagnosing method based on AIS algorithm has been developed, which 

incorporates several major characteristics of the natural immune system [4]. The damage 

patterns are represented by feature vectors that are extracted from the structure’s dynamic 

response measurements. In our method the possible changes in the natural frequencies of the 

structure are utilized as a feature vector because frequencies can be measured more easily than 

other vibration parameters such as mode shapes on the other hand they are less critically 

affected by experimental errors. 

 

The selective and adaptive features of the proposed algorithm allow the AIS to evolve its 

antibodies towards the goal of minimizing the described cost function. The performance of the 
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presented structure damage detector has been validated using a model of damaged 

(delaminated) structure. For modeling the delaminated-beam composite structure an analytical 

model of a delaminated cantilever beam is utilized and natural frequencies are obtained 

through numerical methods [5]. The identification of the delamination location and length in 

the cantilever beam is formulated as an optimization problem [5]. Also the frequencies has 

been obtained by experimental method for one of our case studies, both these frequencies 

obtained by experiment and theory have been used as the AIS algorithm’s input, the results 

show that experiments validate the integrity of our method.   

 

2. Natural and artificial immune systems 

The biological immune system is a complex adaptive system that has evolved in vertebrates 

to protect them from invading pathogens. The biological immune system can be envisioned as 

a multilayer protection system, where each layer provides different types of defense 

mechanisms for detection, recognition and responses. Thus, three main layers include the 

anatomic barrier, innate immunity (nonspecific) and adaptive immunity (specific). Innate 

immunity and adaptive immunity are inter-linked and influence each other. Once adaptive 

immunity recognizes the presence of an invader, it triggers two types of responses humoral 

immunity and cell-mediated (cellular) immunity, which act in a sequential fation. 

Innate immunity is directed against any pathogen. If an invading pathogen escapes the 

innate defenses, then the body can launch an adaptive or specific response against a 

particular type of foreign agent [4]. 
 

3. AIS-based structure damage detection  

The fault detection system is designed using concepts derived from the natural 

immune system. The component correspondence between the natural immune system 

and the AIS-based structure damage detection method is cited in the next subsection. 

The AIS algorithm in our implementation is used to damage detection by defining an 

cost function C(.,.), 

 

                                                                                                                                     (1) 

 

Which should be minimized based upon the calculated and corresponding to unknown 

natural frequencies. In Eq.(1) X is the location of the delamination from one end, and L 

is the length of the delamination. fi’s are the first four natural frequencies, which are 

functions of X and L, and are calculated from the delaminated-beam model, fi
*
’s are the 

first four natural frequencies which are applied to our delamination detection system as 

inputs. A zero cost value indicates an exact match between the corresponding 

frequencies. In this section, the modified immune optimization algorithm is discussed. 
  

3.1. Immune terminologies and representations 

This section defines the major components and parameters used in the AIS algorithm. 

Antigen: each peak of the function to be optimized. 

Antibody: an individual of the population represented as a real-valued attribute string in 

the Euclidean shape-space. 

Fitness: affinity between the antibody and Ag, an index to measure the goodness of the 

antibody. 

Affinity: Euclidean distance between two antibodies. 

Clone: offspring antibodies that are identical to the parent antibody. 

Mutated clone: a clone that has undergone somatic mutation. 

Memory cell: the antibodies with higher fitness and antigenic affinities are selected to 

become memory cells with long life spans.  





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Negative selection: if there is any antibodies in memory cells, whose affinity with Abi is 

higher than a defined limit this Abi is discarded.  
 

3.2. The algorithm 

Step1: Generate n antibodies randomly within the range (0 , 1). 

     1 2 3, , ,..., nP p p p p  

     1 11 12 13 1, , ,..., dp x x x x  

     2 21 22 23 2, , ,..., dp x x x x  

      

     1 2 3, , ,...,n n n n ndp x x x x  
Step2: Generate nc of clones for each antibody Abi in the population. 

C cN n n   

   1 2 3 1 2 3 4 5, , ,..., , , , , ,...,
cn NC C C C C q q q q q q     

  

 

 

1 1 1 1 1

2 2 2 2 2

, , ,...

, , ,...

, , ,...

cn

n n n n n

C p p p p

C p p p p

C p p p p











 

Step3: Mutate each clone. The mutation rate has inverse relationship with the number 

of iteration of parent invariance. 
*

*

         2,3,4,..., , 2, 3,..., 2 ,2 2,...

                            1 , 1 ,2 1 ,3 1 ,...

for

for

i i

i i

c q rand i nc nc nc nc nc

c q i nc nc nc

       


                        * * * * *

1 2 3, , ,...,
cNC c c c c

 
Rand is a number between (0 , 1). 

Step4: Decode the antibodies within the domain of variables of function and 

determine the fitness of all the individuals in the population.  

Step5: For each clone, select only the one with the highest fitness to generate a new 

population. 

Step6: recognizing the answers and enter them in memory cell. If a member of 

population does not change in Nmem iterations, it will be saved in memory cell. 

Step7: using negative selection to replace random member instead of self antibodies. 

Step8: Repeat Step 2 to Step 5 until stopping criteria's is satisfied. 

 Maximum number of iterations allowed. 

 Maximum number of iterations that algorithm can continue without finding a new 

answer. 

 Maximum number of answers that algorithm can find. 

 

4. Delaminated composite beam modeling 

In order to detect delamination locations/size, it’s necessary to obtain the analytical 

solution to the vibration of composite beams with different Delaminations. 

 The delaminated beam considered as 3n+1 Euler-Bernoulli classical beam (with 

Li>>hi) [6, 7] which are connected at the delamination boundaries, where n is number 

of delaminations (geometry of beam in shown in Fig.1) in the present paper, the 

‘constrain mode’ are considered.  Using Euler-Bernoulli beam theory, the governing 

equations for intact beam section are [8]:    
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Where iD  is the reduced bending stiffness of the i-th beam, i is the density of 

material, iA  is the cross sectional area; x is the axial coordinate and t is the time. The 

reduced bending stiffness is as follows [9]:  
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DD                                                                                                                (2) 

 

Where 
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Where  11
)(iA  is the extensional stiffness, 11

)(iD is the bending stiffness, 11
)(iB is the 

coupling stiffness, 11

kQ  is the coefficient stiffness of the lamina, b is the width, 11E  and 

22E are the longitudinal and transverse young’s moduli ,  respectively, 12  and 21  are 

the longitudinal and transverse Poisson’s ratio, 12G  is the in-plane shear modulus 

,respectively,   is the angle of K-th lamina orientation where 2K and 2k-1 are the 

locations of the K-th lamina with respect to the midplane of i-th beam. 

 
Figure 1. delaminated beam geometry 

The equation (1) is valid for intact beam. According to the concept of constrained model 

the delaminated Sections are forced to vibrate together, therefore governing equation for 

beam 1-4 are: 
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For free vibrations, the response can be assumed as follows: 
 

)sin()(),( txWtxw ii                                                                                                                                   (11)  

 

Where   denotes natural frequency and )(xWi is the mode shape of i-th beam section 

substituting Eq.(11) into Eq.(1) and eliminating the trivial solution  )sin ( t =0 one can 

obtain the general solution of the differential equation (1) as: 

)sinh()cosh()sin()cos()(
L

x
SH

L

x
CH

L

x
S

L

x
CxW iiiiiiiii                                                                 (12) 

Where 
 

                                                                                                                                        

             (13) 

 

Unknown coefficients iC , iS , iSH , iCH  can be determined from boundary and 

continuity conditions. The continuity conditions for the deflection, slope, shear (Q) and 

bending moments (M) at x=x2 are as follows (see Fig. 2) [6]: 

 
  WW                                                                                                                                                     (14) 

 

  WW                                                                                                                                                      (15) 

  WDDWD )( 321                                                                                                                        (16)

)(
2

1
)(

2

1
313212321 HHPHHPMMM                                                                                             (17) 

 

Where 
 iii WDQ                 WDM ii                                                                                              (18)   

 
Figure 2.bending moment and shear force at the delamination boundary 

The axial forces Pi can be established from compatibility between stretching/shortening 

of the delaminated layers and axial equilibrium which results  

2
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0321  PPP  (20) 

We can obtain continuity equations for bending moment with substituting E.q (19) and 

(20) into Eq. (17) 
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The boundary and continuity conditions provide a coefficient matrix with 8n+4 orders 

where n is the number of delaminations.  A non trivial solution for the coefficients 

exists only when determinant of the coefficient matrix vanishes. 
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5 .Numerical results 

We study present method using a cantilever beam with a single Delamination, which 

was studied by Shen and Grady [10]. The beam is made of T300/934 graphite/epoxy 

cantilever beam with a [0◦/90◦] 2s stacking sequence. The dimensions of the 8-ply beam 

are 127×12.7×1.016 mm
3
. The material properties for the lamina are: E11 = 134 GPa, 

E22 = 10.3 GPa, G12 =5 GPa, ν12 = 0.33 and ρ = 1.48 × 10
3
 kg/m

3
. All delaminations are 

at the midspan and the lengths are 25.4 mm, 50.8 mm, 76.2 mm and 101.6 mm the first 

four frequencies calculated for the composite beam with cantilever boundary conditions, 

(h2/h1=0.5) are shown in Table 1. There is a good agreement between the frequencies 

calculated by the present model and experimental [10] analytical [11] and FEM results 

[10]. The input natural frequencies are shown in Table 2. 

Table 3 presents predicted test points of Delamination in AIS. The prediction error is 

calculated from the following formula: 
 

(22) 

 

Delamination length (mm) Present (Hz) Shu and Della [17] Shen and Grady 

[15] 

Luo and Hangud [18] 

0.0 82.01 81.88 82.04 81.86 

25.4 80.02 80.47 80.13 81.84 

50.8 74.45 75.36 75.29 76.81 

76.2 65.14 66.14 66.94 67.64 

101.6 54.81 55.67 57.24 56.95 

 

      Table1. Primary frequencies for cantilever composite beam 

 

Test   

point 

no. 

  Desired value 

(mm) 

Input natural frequencies(Hz) 

  X  L  1
st
  2nd  3

rd
 4th 

 1      50.8   25.4    80.0288     481.6375    879.6543  1.2174e+003 

 2     38.1   50.8    74.4523     447.4076    851.9948 1.9024e+003 

 3    25.4   76.2    65.1414 385.3599    752.4364 1.5040e+003 

 4    12.7    101.6    54.8101     308.8741    713.5140 1.3996e+003 

 

Table2. The input natural frequencies 

 

Using Artificial Immune system 

Prediction (mm) Error (mm)   Error (%) 

 X   L  X   L   X   L 

  50.3   25.4  -0.5  0 -0.98   0 

  39.3   50.7  1.2 - 0.1  3.14  -0.1968 

 25.4   76.2 0  0  0  0 

12.7    101.6 0  0  0  0 

Average  0.7 -0.1 2.16 0.1968 

 

Table3. Predicted values by AIS 

6. Experimental setup 

We carried out two experiments Fig.4 to investigate the accuracy of the present 

model and measurements errors. In first experiment, the first three natural frequencies 

of an intact beam are measured and results are used to update the material properties of 

our model with AIS method. Optimization targets were: E11, E22, G12, ν12 and ρ. 
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   In the second experiment we measured natural frequencies of the laminated beam with 

delamination length of 25.4 mm and in the midspan of the beam with (h2/h1=0.5) then 

we use these frequencies to predict delamination location (X) and length (L).  

 In each case the beam was excited by a mini shaker (JZK Sinocera) at the distance of 

127 mm from the fixed end. The dynamic response of the beam was measured using 

laser vibrometer (Ometron VH 300) targeted at 47mm from the fixed end. The response 

measurements were acquired using signal analyzer (Pulse 2827 B&K) and the 

frequency response of the beam was acquired using FFT analyzer (3107 B&K). The 

frequency response of the beam is shown in Fig 3. The results of natural frequency 

measurements for intact experimental cases are shown in Table 4 and updated material 

properties are shown in Table 5. After frequency measurements, three lowest natural 

frequencies are used for fault diagnosis, and the delamination location and length are 

estimated. The estimation results are shown in Table 6.  
 

 

Test  

case        

     

   Location 

(mm) 

  

  Length 

  (mm) 

 

   natural frequencies(Hz) 

 1st  2
nd

  3
rd

 

  

delaminated 

     

50.8 

  

 25.4 

 

 64.8 

 

 349    

 

1050 

 

intact 

 

 

 

 

 

68 

 

 

417 

 

1221 

 

 

Table 4.mesured natural frequencies for experimental cases 

 

  E11(GPa)     E22(GPa)     G12(GPa)     ν12   ρ (kg/m3) 

Initial  

properties 

 

 

134 

 

10.3 

 

 

5 

 

0.33 

 

1.48 × 10
3
 

Updated 

Properties 

 

110.55 

 

11.86 

 

4.6 

 

0.28 

 

1.8 × 10
3
 

 

\Table 5.updated properties using AIS algorithm 

 

Exact value(mm) Prediction (mm) Error (mm)   Error (%) 

X L  X   L  X   L    X   L 

50.8 25.4   60.3 27.9  9.5   2.5 18.7   9.8 

 

Table 6.actual and estimation delamination length and location for experimental case 

 
 

      Figure 3. Frequency response for delaminated and intact beam obtained by FFT analyzer (3107 B&K) 
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Figure 4. Experimental setup 

7. Conclusion 

For the improvement of reliability, safety and efficiency advanced methods of 

supervision, fault detection and fault diagnosis become increasingly important in many 

engineering systems. The components of the AIS such as its representation, affinity 

function, and immune process are tailored for the damage detection. The evolution and 

immune learning algorithms make it possible for the damage detector to generate a high 

quality memory cell set for recognizing various structure damages. The average values 

of location and length prediction errors are 2.16% and 0.1968% for the AIS method, 

respectively. The effectiveness of this method is approved by experimental results, the 

prediction values for location and length errors are 18.7% and 9.8%, respectively. The 

proposed model has the ability to be used for analysis of complex structures with 

different kinds of damages.   
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