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Abstract 
This paper proposes a shape optimization method for designing the interface shapes of 
composite clad structures consisting of two different materials.  The outer boundaries and the 
interface boundaries are considered as the design boundaries for determining the shape of 
the clad structure. The compliance is minimized under the volume constraints of the two 
materials. The shape gradient function for this type of problem is derived using the material 
derivative and adjoint methods and is applied to the traction method, a gradient method in a 
Hilbert space. With this method, the optimal outer and interface boundary shapes can be 
determined with mesh regularity and without requiring shape design parameterization, while 
minimizing compliance. The validity of the proposed method for the interface design of clad 
structures was verified on the basis of calculated results. 

 
 

1 Introduction 
Clad materials fabricated by bonding two or more different materials are types of composite 
materials that are extensively used in many industrial products. The most notable feature of 
clad materials is that new properties are obtained by combining the different constituent 
materials. The combinations of materials, thicknesses and widths often become design 
variables in the design of clad materials. It is expected that even more new properties can be 
obtained by adding the interface shape to the design variables in the design of clad structures, 
which is the motivation for this research. This idea can also be applied to other composite 
structures with thick layers such as fiber-reinforced plastic and metal-plastic composites.  
Interface shape optimization problems can be defined by combining two or more different 
media or materials such as a structure-fluid problem [1]-[3]. In this paper, a linear elastic body 
of different materials is treated. In studies of interface shape optimization problems of elastic 
bodies to date, Haug et al. derived the shape sensitivity in their monograph [4]. Choi et al. 
presented an application to implant design in dentistry [5]. In contrast, in our previous works, 
we have developed the traction method, and applied it to various shape design problems of 2D 
and 3D continua, involving plate and shell structures [6]-[8]. The traction method, a gradient 
method in a Hilbert space, was proposed as a solution to domain optimization problems by 
Azegami [9]. With this method an arbitrary smooth boundary shape is obtained without any 
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shape parameterization. In this paper, the traction method is applied to the interface shape 
optimization problem of composite clad structures consisting of two dissimilar materials. The 
interface and outer boundaries are treated as the shape design boundaries to be determined. A 
stiffness design problem is defined by using compliance as the objective functional and the 
two material volumes as the constraint conditions. A distributed-parameter shape optimization 
problem is formulated, and the shape gradient function, i.e., a shape sensitivity function, is 
derived. The shape gradient function is applied to the design boundaries as a pseudo-traction 
force to vary the shape. This analysis also serves to smooth the boundaries, since it is 
important for node-based shape optimization methods to resolve the jagged boundary problem.  
In the following chapters, the domain variation, the formulation of the problem, and the 
optimization method will be described. Then, calculated results will be presented. 
 
 
2 Domain variation for shape optimization 
A technique for representing domain variation using the speed method will be introduced 
briefly before formulating the shape optimization problem. A detailed explanation of this 
technique may be found in references [4], [10] and [11]. 
As shown in Fig. 1, it is assumed that a linear elastic body having an initial global domain of 

3    and its boundary     with two different materials A and B undergoes variation 
(i.e., the design velocity field) V such that its domain and boundary become s  and s . Sub-

domains and their boundaries with material A are defined as ,  A A  , and with B as ,  B B  , 

respectively. The interface between A  and B  are defined as AB A B    . The notation 

  indicates a set of positive real numbers. The domain variation can be expressed by a one-
to-one mapping ( ) : ,  0S ST X x s     X . The notations s and   indicate the 

iteration history of domain variation and a small positive number, respectively. Assuming a 
constraint is acting on the variation in the domain   , the infinitesimal variation of the 
domain can be given by 
 

( ) ( )s s sT T s   X X V                                               (1) 

 
where the design velocity field V is given as a derivative of ( )sT X  with respect to s and can 

be defined as a piecewise continuous function as 
 

1( ) ( ( )),   s
s s

T
T

s


 


V x x x ,       1 3{ ( ; ) |  in }C C      0V V V                   (2) 

 
where C  is the suitably smooth function space that satisfies the constraints of domain 

variation. The optimal design velocity field V is determined by the traction method which will 
be explained later. 

Figure 1. Domain variation of Continuum consist of two materials.
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3 Formulation of shape optimization problem of solid structure 
Here we will solve the non-parametric shape optimization problem for the rigidity design of a 
clad structure with linear elastic materials A and B. Consider that body forces per unit volume 

( )f x , surface forces per unit area ( )P x  and pressure ( )p x n  act on  , 1  and 2 , 

respectively. Letting ( )l v  denote compliance as an index of rigidity, the compliance 
minimization problem subject to the constraints of M, MA and the state equation can be 
formulated as shown below. 
 

Find      and 
ss   ,                                                                                 (3) 

that  minimizes    ( )l v ,                                                                                               (4) 

ˆ ˆsubject to    ( ) ,     ( )
s As

A AM d M M d M
 

      ,                                 (5) 

( , ) ( , ) ( , ) ( , ) ( ),   A A B Ba h a h l U     v w v w v w v w w w ,          (6) 

 
where M and MA denote the total volume and the volume with material A, respectively. The 

notation ( )  indicates the constraint value. The bilinear forms ( , )ma v w  and ( , )mh v w  

(m=A,B) and the linear form ( )l w  are defined as  
 

( , ) ( ) ( )
m

m m
m ij ija d


   v w v w ,                                                     (7) 

,( , )
m

m m
m i j j ih n w d


  v w                                                              (8) 

1 2

( ) ( )i i i i i il f w d Pw d p n w d
  

      w x ,                  (9) 

, ,

1
( ) ( )

2
m m m
ij i j j iv v  v ,   ,( ) ( )m m m

ij ijkl i jC v v                       (10)(11) 

 
where vm, w and m

ijklC  are the displacement vectors, the variational displacement vector and the 

elastic coefficients, respectively, and U denotes the kinematically admissible displacement 
space that satisfies the Dirichlet condition. The tensor notation employed in this paper uses 
Einstein's summation convention and a partial differential notation ,( ) ( ) /i ix     . 

Letting w and  ,   denote the Lagrange multipliers for the constraints of the state equation, 

M and MA, respectively, the Lagrangian functional L for this problem can be expressed as 
 

. ( ) ( ) ( , ) ( , ) ( , ) ( , ) ( )A A B BL l a h a h l        v w v v w v w v w v w w                               

ˆ ˆ( ) ( )A AM M M M         (12) 

 

Assuming that the Dirichlet boundaries are not varied with respect to s, the material derivative 
L with respect to the domain variation of the Lagrangian functional L is expressed using the 
design velocity field V as follows: 
 

( ) ( , ) ( , )+ ( , )+ ( , ) ( , ) ( , )A A A A B BL l a a h h a a           v v w v w v w v w v w v w                            

   ˆ ˆ+ ( , )+ ( , )+ ( )+ ( )+ ( )B B A Ah h l M M M M G       v w v w w n,V    (13) 

where 
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\
( ) ( ) ( )A A A A

i i i i n n ij ij nG f w d f w V d V d V d
  

    
              n,V v w                

\
( ) ( ) [{ ( ) ( ) ( ( ) ), ( ( ) ) }

AB

B B B A A A A A A A A A
ij ij n ij ij ij j i m m ij j i nV d n w n n w V

   
            v w v w v v

{ ( ) ( ) ( ( ) ), ( ( ) ) } ]B B B B B B B B B
ij ij ij j i m m ij j i nn w n n w V d        v w v v                                             

1 2
, ,{ ( ) } { div( ) }i i i j j i i i j j i i n i i i nPw P n w Pw n Pw V d p w n pw V d

 
                         (14) 

 
where n i iV nV , ( )m m m

n i in VV x . The vector n is an outward unit normal vector to the 

boundary. The notation ( )  indicates a shape derivative and has a relation of 

,(  ) i iV¢⋅ ⋅ ⋅= (  ) + (  )  [4] [10]. The notation   expresses twice the mean curvature of   in 3 . 

Considering the following relationship 
 

,      ,      A B A B A A B B
ij j ij jn n        n n ,                            (15)(16)(17) 

 
and assuming that f, P and p are not varied with respect to s within the space (i.e., 

( ) ( ) ( ) 0f P p    x x x ), Gn,V  can be expressed as the dot product of the shape gradient 

function (i.e., shape sensitivity function) ( )GG n  and the design velocity field V as shown in 
the following equations. 
 

\ \A AB B AB

A B A
n A n B n AB nG GV d G V d G V d G V d

     
         n,V                               

1 2
1 2 0

A

A
n n A nGV d G V d G V d

  
       ,   (18) 

i iG f w   ,     ( ) ( ),     ( ) ( ),  A A B B
A ij ij B ij ijG G      v w v w           (19)(20)(21) 

{ ( ) ( ) ( ) ( )} ( ) { ( ) ( )}A A B B A A A B A
AB ij ij ij ij ij j im im mG n n          v w v w v w w               (22) 

1 , , 2,      div( )i j j i i i j j i i iG P n w Pw n Pw G pw    ,    0 AG            (23)(24)(25) 

 
The optimality conditions of this functional L are expressed as shown below. 
 

( , ) ( , ) ( , ) ( , ) ( ),   A A B Ba h a h l U          v w v w v w v w w w ,                  (26) 

( , ) ( , ) ( , ) ( , ) ( ),   A A B Ba h a h l U          v w v w v w v w v v ,                   (27) 

ˆ ˆ0,      0A AM M M M    ,                              (28)(29) 

 
where Eq. (26) is the governing equation of v which coincides with the state equation, Eq. (6), 
and Eq. (27) is the governing equation of w, which is called the adjoint equation. The 
Lagrange multipliers   and   are determined so as to satisfy the volume constraints of Eqs. 

(28) and (29). Further, the relationship of Eq. (26) and Eq. (27) yields the self-adjoint 
relationship v=w. 

By substituting v (or w) into Eq. (13), the material derivative L  can be given by the 
following equation. 

 

( )L G G d d
 

       n,V n V G V                                                                           

\ \A AB B AB

A B A
n A n B n AB nGV d G V d G V d G V d

     
                                           
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1 2
1 2 0

A

A
n n A nGV d G V d G V d

  
       ,           (30) 

 
The derived shape gradient function is applied to the traction method to determine the optimal 
design velocity V. 
 
 
4 Traction method 
The traction method is a gradient method in a Hilbert space [11]. With the traction method, 
the negative shape gradient function –G is applied in the normal direction to the design 
boundary as an external distributed traction force to vary the shape with an elastic support 
(referred to here as the Robin-type traction method) or without an elastic support (referred to 
here as the Neumann-type traction method). A shape design constraint is applied as the 
Dirichlet condition. The elastic tensor is used as the positive definite tensor needed in the 
gradient method. We call this process the velocity analysis, or a pseudo-elastic analysis. The 
resultant displacement field (i.e., design velocity field) s V  represents the amount of domain 
variation added to the original shape to update it. This shape updating decreases the objective 
functional. 
The governing equation of the velocity analysis with the Neumann condition is given as Eq. 
(31) and with the Robin condition ( : a distributed spring constant per unit area) as Eq. (32) 
[12]. The Robin type is used in this work. 
 

( , ) ,     a G C   V w n,w w .                                                 (31) 

( , ) + ( ) ,   a G C   Q= " ÎV w V n n,w n,w w ,                         (32) 

where  

( , ) ( ) ( )ij ija d

   V w V w .                                            (33) 

 
Equations (31) and (32) can be solved by a standard finite element analysis. 
By repeating the stiffness analysis and the adjoint analysis (omitted in this work) for obtaining 
the shape gradient function, the velocity analysis and the updating of the shape by s V , the 
objective functional is minimized, resulting in the smooth optimum shape.  
Other features of this method are summarized as follows: (1) it is not necessary to 
parameterize the shape because all nodes on the design domain can be moved as the design 
variable (theoretically infinite degrees of freedom) and the shape sensitivity is efficiently 
calculated by the adjoint method, (2) it is not necessary to refine the mesh because the entire 
domain can be varied by the distributed force, (3) it assures smooth boundary shapes without 
any jagged shape problem because the elastic tensor serves as a smoother, and (4) it can be 
easily implemented in combination with a commercial FEM code because the shape gradient 
function is derived without differentiating the stiffness matrix with respect to the design 
variables. More details of the traction method involving the verification of smoothness are 
given in references [11] and [13]. 
 
 
5 Calculated results 
To confirm the validity of the proposed method, it was applied to three design problems. In all 
problems, it was assumed that the surface forces applied were not varied with respect to s. 
5.1 Cantilever beam problem with two layers 
The first one is a simple solid cantilever beam problem with two different material layers A 
and B. The initial shape and the boundary conditions for this problem are shown in Fig. 2. The 
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boundary condition for the stiffness analysis is shown in Fig. 2-(a). The constraint condition 
for the velocity analysis is shown in Fig. 2-(b). In the velocity analysis, all side boundaries 
were slid and the top and bottom boundaries were fixed. Young’s modulus of material A is 
EA=210 (GPa) and that of material B is EB=21 (GPa). The interface in the center is optimized 
under the two volume constraints that the total volume and the volume of layer A are constant. 
The obtained shape is shown in Fig. 3-(a). For comparison with (a), the result obtained under 
only the total volume constraint is shown in Fig. 3-(b). The portion near the fixed area in the 
stiffness analysis is more dominated by material A with a high Young’s modulus in (a) and (b), 
but the interface shapes obtained are different because of the effect of the volume constraints. 
Iteration convergence histories of the compliance and the volume for both conditions are 
shown in Figs. 4-(a) and (b). The values were normalized to those of the initial shape. The 
compliances of the obtained shapes (a) and (b) are reduced by 44% and 63% from the initial 
shape, while satisfying each volume constraint, respectively.  

5.2 Cantilever beam problem with three layers 
The second problem involves the same cantilever as in the first problem, but one with three 
layers of two different materials A and B as shown in Fig. 5-(a). The shapes obtained are 

Figure4. Iteration histories of cantilever beam with two layers
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shown in Fig. 5-(b) and -(c), respectively. The total volume and that of material A are 
constrained so that both are kept constant in (b), and only the total volume is kept constant as 
the constraint in (c). The portion near the fixed area is more dominated by material A, the 
same as in the first problem, but the interface shapes differ between the two conditions. The 
compliances of the obtained shapes (b) and (c) were reduced by 43% and 82% from the initial 
shape, respectively.  

5.3 Both ends clamped beam problem with two layers 
The last problem is a both ends clamped beam problem with two different material layers A 
and B. The initial shape and the boundary condition for the stiffness analysis are shown in Fig. 
6-(a). The constraint condition for the velocity analysis is shown in Fig. 6-(b). In the velocity 
analysis, all side boundaries were slid and the top boundary was fixed. Young’s modulus of 
material A is EA=21 (GPa) and that of material B is EB=210 (GPa). The interface in the center 
and the outer lower boundary are optimized under the two volume constraints that the total 
volume and the volume of layer A are constant. The obtained shape is shown in Fig. 7-(a). For 
comparison, the result obtained under the condition that the positions of the materials are 
reversed is shown in Fig. 7-(b). The interface and lower boundary shapes obtained differ 
considerably between the two conditions. The compliance reduction for (a) was 57% while 
that for (b) was 43%. 
 
 
Conclusion 
In this paper, we have proposed a numerical shape optimization method for designing the 
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interface and outer boundary shapes of composite clad structures consisting of two different 
materials. The compliance was minimized under the volume constraints of the two materials. 
A distributed-parameter shape optimization problem was formulated and the shape gradient 
function was derived. Using the traction method, the optimal outer and interface boundary 
shapes were determined with mesh regularity and without requiring shape design 
parameterization. Three design examples using this method were presented to demonstrate its 
effectiveness for designing the optimum interface and outer boundary shapes of composite 
clad structures consisting of dissimilar materials. 
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