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Abstract 

A global optimisation technique for the design of damping properties of hybrid 

elastomer/composite laminates is presented. The goal of the procedure is to maximise the first 

N modal loss factors of the laminate subject to constraints on the in-plane and out-of-plane 

stiffness along with a constraint on the weight of the plate. The problem is considered in the 

most general case: no simplifying hypotheses are made on the behaviour of the hybrid 

laminate, thus allowing us to consider as design variables the number of layers (both of the 

elastic and viscoelastic layers), their thickness and orientations as well as the position of the 

viscoelastic plies within the stacking sequence. As an example, the method is applied to a 

rectangular plate and the results demonstrate the effectiveness of the proposed strategy. 

 

 

1 Introduction 

Several works have been carried out on the study of damping properties of hybrid plates, 

shells and beams. Rather complete, but not exhaustive reviews on this subject can be found in 

[1-4]. Several numerical studies have been conducted on the effect of adding viscoelastic 

layers to vibrating beams and plates [5-7]. As it can be resumed from the state of the art, until 

now, the problem of designing the damping characteristics of the hybrid laminates has been 

stated considering as design variables only the thickness and orientations of the elastic plies 

along with the thickness and/or the material properties (shear modulus, material loss factor, 

density) of the viscoelastic layers. The main objective of the present work consists in 

determining also which are the best number of the constitutive layers of the hybrid laminate 

and the best positions of the elastomeric layers within the stacking sequence (along with the 

values of orientation and thickness for each ply) in order to maximise the damping properties 

of the structure. Moreover, constraints on the in- and out-of-plane stiffness along with a 

constraint on the total mass of the hybrid plate are considered in order to avoid the 

degradation of the mechanical properties and the increase of the weight of the structure. 

The problem is formulated in the most general case: no simplifying hypotheses are made on 

the behaviour of the hybrid laminate and on the position of the viscoelastic plies within the 

stack, differently from which is usually done in literature where it is a-priori assumed that the 

positions of elastomeric layers within the stack are always located between two consecutive 

stiffer plies. In addition, since the material properties of the elastomeric plies depends on the 

frequency, the evaluation of the undamped eigenfrequencies and of the structural loss factors 
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leads us to consider a non-linear modal analysis, thus the Iterative Modal Strain Energy 

(IMSE) method is employed to overcome this difficulty. 

In order to obtain a configuration that represents a global optimum and also to include the 

number and position of layers among the design variables we use, as optimisation tool, the 

genetic algorithm (GA) BIANCA (see [8, 9]) with crossover on species. The main difficulty, 

when dealing with the optimisation of modular structures, is how to take into account the 

variable number of modules, even in the case wherein the modules are non identical, as the 

case of hybrid laminates with variable number of plies made of different materials. As 

explained in Sec. 3, in the framework of GAs, this problem corresponds to the search of 

solutions in a design space made up of individuals with variable number of chromosomes and, 

hence, belonging to different species. For this purpose, we developed new genetic operators 

that perform the crossover and mutation operations among individuals of different species, see 

[9]. In this way the number of layers is directly related to the number of the individual’s 

chromosomes and, hence, the optimal number of layers is an outcome of the genetic process, 

which automatically issues the best species. Moreover, during the optimisation process, the 

GA is coupled with the FE code ANSYS in order to evaluate the objective and constraint 

functions. 

 

2 Problem description 

2.1 Geometry and materials 

The optimisation strategy presented in this work allows to find a solution for the problem of 

designing the damping properties of hybrid laminates and it is applied to a rectangular hybrid 

plate, whose dimensions are depicted in Fig. 1.  

 

 

Figure 1. Geometry of the hybrid plate. 

 

Concerning the typical dimensions of the plate, the thickness of each layer is constrained to 

remain sufficiently small compared to both width and length of the plate, in order to keep 

valid the assumptions of the thin plate model. Moreover, we assume that the fiber-reinforced 

plies have linear elastic orthotropic behaviour. The material used for the viscoelastic layers is 

a rubber-like material having linear isotropic behaviour. In addition, the properties of that 

material are considered dependent upon the loading frequency f. Introducing the fourth-order 

complex viscoelasticity stiffness tensor D
v
 the constitutive law is: 

 

)()()(D  with  )( fiDfDffD v
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where )( fDv

r and )( fDv

i  are the fourth-order tensors which characterise the energy storage 

and the dissipative response of the material, respectively. Moreover, the Young’s modulus, 

the Poisson’s ratio and the material loss factor are frequency-dependent. The variation of the 

Young’s modulus with the frequency is expressed as: 
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Concerning the numerical value of all material properties, see [10].  

2.2 Loading Conditions 

The design of the hybrid laminate represents a compromise between its damping capability 

and the ability of keeping good mechanical properties in terms of stiffness, without increasing 

too much the weight. The dynamic response of the structure is evaluated through a classical 

free vibration analysis. Only the first N = 5 non-rigid modes are calculated considering free 

displacement boundary conditions on the edges of the plate. Since the material properties of 

the viscoelastic layers depend upon the frequency, the calculation of the eigenfrequencies, as 

well as the modal loss factors, is iterative for each eigenfrequency. To this purpose the IMSE 

method [4, 11], which is an extension of the MSE method originally introduced by Ungar and 

Kerwin [12], is employed to overcome this difficulty. The material properties are updated 

according to the adopted material law, in our case the law of eq. (2), at the value of frequency 

of the current iteration, within the vicinity of the considered natural mode. Once the 

convergence on the i-th undamped natural frequency is reached, the corresponding modal loss 

factor i  is evaluated as: 
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where )( iv f is the material loss factor at the current frequency, while )( iv fW and )( itot fW  are 

the strain energy of the viscoleastic layers and the total strain energy of the structure for the 

ith mode, respectively. The logical flow of the IMSE approach that we have implemented 

within the ansys environment is shown in Fig. 2. For more details, see [10]. 

 

 

Figure 2. Flow of the IMSE strategy for the prediction of the loss factors of the structure. 
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2.3 Finite element model of the hybrid plate 

Two different mechanisms of dissipating the vibratory energy can essentially be observed in 

viscoelastically damped structures (see [1]): the first dissipation phenomenon is linked to the 

shear strains, which are predominant in the constrained viscoelastic materials, while the 

second one is related to the direct normal strains, in the case of unconstrained viscoelastic 

materials. In order to predict these phenomena, 3D brick elements have been considered to 

model the rubber layers: we need to build a mathematical model able to describe (with a good 

level of accuracy and reliability) the mechanical response of the physical system. To this 

purpose the FE model of the hybrid plate has to be able to catch those aspects which 

normally, even with higher-order 2D theories, are not well described, e.g. the damping 

response associated to the shear strains through-the-thickness. Since the model is built in 

ANSYS environment, we use SOLID185 elements, which are solid elements with 8 nodes 

and 3 degrees of freedom (DOFs) per node. Moreover, this type of element is also employed 

for the elastic plies. 

  

3 Formulation of the optimisation problem 

In this section, the problem of designing the damping properties of a hybrid plate is stated as a 

constrained optimisation problem. The goal of our strategy consists in maximising the first N 

modal loss factors of the structure, without degrading the stiffness properties of the plate and 

increasing too much its weight. The problem is stated in the most general case, thus the design 

variables are: 

• the total number of layers (both elastic and viscoelastic), n; 

• the position and the number of the viscoelastic layers within the stack, which are 

directly linked to the variable IDk, (k = 1, ..., n), that identifies the nature of the k-th 

ply, i.e. IDk = 1 if the k-th ply is viscoelastic, IDk = 0 otherwise; 

• the thickness of each layer, tk (k = 1, ..., n); 

• the fiber orientation of the elastic plies, δk (k = 1, ..., n). 

It is worth noting that, since the number of layers is included among the optimization 

variables, the total number of design variables of the whole optimisation process can change 

for each possible point-solution in the design space, or, in other words, the procedure 

determines by itself the optimal number of design variables. 

3.1 Mathematical statement 

The optimisation problem can now be established. The maximisation of the N first modal 

factors can be expressed as the minimisation of the following objective function: 
 





N

i

i

1

       (4) 

 

that represents the opposite of the sum of the first N modal loss factors. Moreover, the 

constraints on the maximum decrease of the stiffness properties and on the maximum increase 

of the mass of the plate have to be considered. Therefore, the constrained minimization 

problem can be stated as a classical Non-Linear Programming Problem (NLPP) as follows: 
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In eq. (5) Rx, Ry and Rz are the reactions of the plate which represent a measure of the stiffness 

of the structure, while M is the mass of the plate. The apex ref stands for reference value. The 

reference values of the reactions and mass are calculated, before the optimisation process, on 

a reference undamped structure, i.e. a plate without elastomeric layers. The quantities x , y , 

z  and M  are the user-defined tolerances on each constraint. The meaning of the constraints 

on the reaction forces and the mass of the hybrid plate are the following: the maximum loss in 

stiffness and the maximum increase in mass of the optimised structure are superiorly bounded 

by the value of the corresponding tolerances. It can be noticed that the NLPP of eq. (5) is 

highly non-linear and non-convex in the space of design variables. 

3.3 Numerical strategy 

The previous considerations on the nature and on the varying number of design variables 

involved into the optimisation process oriented our choice on GAs, as numerical tool, in order 

to search solutions of the problem (5). According to the metaphor adopted by GAs, each point 

in the design space corresponds to an individual whose genetic structure is composed of 

chromosomes and genes [13, 14]. When the object of the optimisation problem is a modular 

system, each constitutive module can be represented by a chromosome, each chromosome is 

composed of genes, and each gene represents a design variable related to the module. In 

agreement with the paradigms of natural sciences, individuals characterised by a different 

number of chromosomes, i.e. modular structures composed of different number of modules, 

belong to different species. In this work, we use the new version of the GA BIANCA, see [9], 

able to cross individuals belonging to different species. Specific operators of cross-over and 

mutation have been developed in order to perform reproduction over individuals having 

variable number of chromosomes: more details about the main features of this improved GA 

along with a description of the new genetic operators for the evolution of species can be found 

in [8, 9]. It is worth noting that, the constrained minimisation problem, formulated in Eq. (5), 

is transformed into an unconstrained one defining the penalised objective function. For more 

details, see [10]. 

 

4 Numerical results 

In order to demonstrate the capabilities of our strategy we study the optimisation of the 

damping properties of a rectangular hybrid plate whose in-plane dimensions are those shown 

in Fig 1. In particular we performed the optimisation process in the most general case wherein 

no simplifying assumptions on the stacking sequence of the hybrid plate are made (thus, the 

total number of design variables depends upon the number of layers). The user-defined 

tolerances on the constraints of the problem (5) are set equal to 0.05, i.e. the maximum loss in 

stiffness and the maximum increase in mass between the optimised structure and the reference 
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one are limited to 5%. The design variables, their nature and bounds are detailed in [10]. Due 

to the greater complexity of the optimisation process, the population size is fixed to Nind = 60 

and the maximum number of generations is assumed equal to Ngen = 80. The crossover and 

mutation probability are pcross = 0.85 and pmut = 1/Nind, respectively. Selection is performed by 

roulette-wheel operator and elitism is active. The ADP method is used for handling 

constraints. The best solution found by BIANCA is shown in Table 1.  

 

 Reference Best Solution 

n 6 6 

kID   [1/1/0/0/0/0] 

k  [90/45/0] S [V/V/0/90/90/0] 

kt  [0.3/0.3/0.3] S [0.32/0.31/0.43/0.42/0.31/0.30] 

1   0.01756 

2   0.00483 

3   0.01228 

4   0.01066 

5   0.01298 

 Hzf1   70.09 

 Hzf2   164.87 

 Hzf3   217.90 

 Hzf4   317.45 

 Hzf5   346.97 

 NRx  -17352 -17065 (-1.6%) 

 NRy  -44480 -43688 (-1.7%) 

 NRz  -23.06 -28.31 (+22.7%) 

 KgM  0.0675 0.07 (+3.7%) 

   -0.05831 

1g   -0.03349 

2g   -0.03218 

3g   -0.27763 

4g   -0.013 

Table 1. Best solution found by BIANCA for the optimization problem (5), V denotes the position of the 

viscoelastic ply. 

 

The optimal number of plies is 6. Fig. 3 shows the variation of the best solution and of the 

best species along the generations: the global constrained minimum has been found after 62 

generations, whilst the optimal number of plies is found after only 7 generations. The optimal 

configuration of the hybrid plate shows 2 viscoelastic plies at the top of the structure. Indeed, 

this is a non-conventional configuration: for this configuration the damping phenomenon, 

depending on the considered eigenfrequency, involves all the strain components. As 

conclusive remark, it can be noticed that such a solution is equivalent to a 5 layers solution 

with the following stack and thickness: [V/0/90/90/0] and [0.63/0.43/0.42/0.31/0.30], 

respectively.  

 



ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

7 

 

 

Figure 3. (a) Best values of the objective function and (b) number of layers along generations for problem (5). 

 

4 Conclusions 

In this work, an optimisation procedure for the design of damping properties of hybrid 

elastomer/composite laminates is presented. The goal of the procedure is to maximize the first 

N modal loss factors of the laminate subject to constraints on the in-plane and out-of-plane 

stiffness along with a constraint on the weight of the plate. The main key points of our 

strategy consist in determining which are: a) the best number of layers of the hybrid plate, and 

b) the best number and positions of the elastomeric layers within the stacking sequence. The 

main difficulty, when dealing with this kind of problems, is how to take into account the 

variable number of layers among the optimisation variables. In order to deal with such a 

problem we used our improved GA which presents new genetic operators that perform the 

crossover and mutation operations among individuals of different species. The use of an 

evolutionary strategy along with the fact that the problem is stated in the most general case, 

lead us to find some non-conventional configurations, i.e. non-constrained layer 

configurations, which show better damping properties when compared to the classical 

constrained layer treatments. The proposed approach appears to be very flexible and 

applicable to various engineering problems wherein the results are given by complex and 

expensive models and a high number of analyses is necessary to reach a suitable optimum. 

Moreover, the procedure has a high level of versatility: more constraints could be easily added 

to the optimisation problem, e.g. constraints on the strength, elastic symmetries, yielding or 

de-lamination of the hybrid plate, without reducing the power and the robustness of the 

proposed approach.  
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