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Abstract
This study aims to bridge the gap between classical understanding of transverse cracking in  
[0/90]s laminates and recent computational methods for the modeling of progressive laminate  
failure. Specifically, the study investigates under which conditions a three-dimensional model  
with cohesive cracks can reproduce the in situ effect for the ply strength. Subsequently, it is  
shown that  it  is  possible  to  reproduce  matrix  cracking with  a  single  element  across  the  
thickness of the ply, provided that the interface stiffness is properly selected.  By using an  
interface stiffness that is inversely proportional to the ply thickness, a shear lag deformation  
is achieved that is equivalent to the opening deformation of a transverse matrix crack.

1 Introduction 

The fidelity of progressive damage analysis of laminated composite structures has improved 
dramatically  with the application  of  the extended finite  element  method (X-FEM),  which 
provides  a  tool  for  the  direct  insertion  of  transverse  matrix  cracks  in  directions  that  are 
independent  of  mesh  orientation  [1-3].  Failure  analyses  with  X-FEM  are  most  often 
performed at the mesolevel, in which each ply is represented by a homogeneous orthotropic 
material. To capture the proper sequence of load redistributions that result from interactions 
between matrix cracks and delaminations, each ply must be modeled with separate elements. 
Therefore, the minimum mesh requirement consists of a single layer of element across the 
thickness of each ply and a layer of cohesive elements between the plies.

Few developers, if any, have attempted to use more than one element over the thickness of a 
ply  because  the  computational  requirements  associated  with  such  small  elements  render 
intractable any analysis larger than a small coupon. However, the elliptical opening profile of 
a transverse crack cannot be represented with a single element. 

The main objective of the present study is to investigate  the ability  of mesolevel X-FEM 
models with a single layer of elements per ply to capture accurately all aspects of matrix 
cracking.  In this  paper,  we examine to what extent  the model  can predict  the in situ  ply 
thickness effect on crack initiation and propagation. A follow-up study will include the crack 
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density as a function of stress, the stress level for crack saturation, and the interaction between 
delamination and transverse cracks. 

Analyses of [0/90]s cross-ply laminates subjected to tensile loads are performed. A detailed 
three-dimensional model composed of several elements through the thickness of each ply is 
used to obtain the reference solution. In this model, matrix cracks are inserted discretely using 
X-FEM. The reference results are compared with those obtained with a simplified model in 
which the thickness of each ply is represented by a single element. 

Much attention is given to the detailed model for the reference solution, because advanced 
numerical  methods have never  before been applied in such detail  to the classical  case of 
transverse  cracking  in  cross-ply  laminates.  Dedicated  analytical  models  are  available  to 
predict the in situ effect [4-5] and the crack progression [6-7], but the extent to which state-of-
the-art computational methods can also predict the experimentally observed phenomena has 
not been properly addressed. One exception is the work of Maimí et al [8] who applied a 
continuum  damage  model  to  model  progressive  failure  in  cross-ply  laminates.  Good 
agreement  with experimental  observations  in terms of stiffness change during progressive 
cracking  was  reported.  However,  crack  propagation  in  the  transverse  direction,  which  is 
crucial for the in situ effect, was not included in the validation of that model.

This paper is organized as follows. Firstly,  the model is briefly described. Secondly,  it  is 
examined  whether  the  inhomogeneity  of  the  cross  section  can  be  represented  for  crack 
initiation.  Thirdly, the full three-dimensional model is applied to reproduce the in situ effect. 
And fourthly, a  study is presented on whether it is possible to obtain the same quality of 
results with a simplified model composed of a single element over the thickness of the ply.

2 Model description

Initiation and propagation of a single transverse crack in a cross-ply laminate is modeled (see 
Figure 1). The transverse crack is inserted as cohesive X-FEM crack following Van der Meer 
and Sluys  [1].  Delamination  is  not  considered.  However,  further  on  in  the  paper,  elastic 
deformation of the ply interface will be included. There, the interface will be given a constant 
stiffness  K, which is similar to the penalty stiffness normally used in cohesive laws for the 
initial undamaged state (see e.g. [9]). Material parameters are those reported by Dvorak and 
Laws [4] for T300/934, with reference to the experiments by Crossman and Wang [10,11]. 
The in plane dimensions of the simulated domain are 20 by 10 mm2 and the layup is [02/90n]s 

where the thickness of the 90n block is varied. At least 10 elements are used over the thickness 
of the transverse ply. Furthermore, a dissipation-based  arc-length solver is used for robust 
analysis [12]. 
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Figure 1. Cross-ply laminate loaded in tension.
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To introduce some of the key features for the discussion of the results, an illustration of the 
global response is given in Figure 2. Schematic  load-displacement graphs are shown with 
exaggerated stiffness loss. The distinction between thick and thin ply behavior as introduced 
by Dvorak and Laws [4] is visible in the global response. In the thin ply case, the in situ 
strength is related to stable crack propagation in transverse direction at a constant load level. 
In the thick ply case,  however,  the in situ strength is  related to a peak load followed by 
unstable  development  of  damage  through  the  thickness  of  the  transverse  ply.  When  the 
equilibrium path is followed through the snapback, a plateau with stable crack propagation is 
eventually  also found in the thick  ply case.  The stress  level  at  which the peak occurs  is 
independent of the ply thickness, while the plateau rises for decreasing ply-thickness. The 
thickness for which the plateau has the same stress level as the peak marks the transition 
between the thick and the thin ply regimes. 

3 Initiation with randomness

The in situ strength is understood as the stress level at which a pre-existing defect in the 
transverse ply develops into a crack. Because of the importance of pre-existing defects for this 
phenomenon, it is unlikely that a model that does not account for inhomogeneity in the cross 
section would be able to predict the in situ effect correctly. In this section, three different 
strategies to generate inhomogeneous fields for the strength and/or toughness (see Figure 3) 
are compared:

a) This method consists of assigning an uncorrelated (scattered) random strength to each 
element in the cross section that may be cracked (cf. [8]). The randomness conforms 
with the very short length scale of stress variations in the transverse ply which are of 
the order of the fiber diameter – smaller than the size of the finite elements in the 
present simulations. However, this approach results in mesh-size dependence because 
the size of the weak spots is equal to the element size. Moreover, the principle stating 
that elements in a finite element model should be several times smaller than typical 
variations in the solution is violated. 

b) The second option is to use a correlated random field. This field requires a length scale 
as input – which is hard to relate to reality – but it results in a numerical model that is  
more well-posed than the scattered field because the input field exists independently 
of the mesh. 

c) The third option is to define a single weak spot. Choices have to be made for the size 
and shape of the weak spot as well as for its depth. This approach is less predictive 
because  the  defect  has  to  be  placed  at  location  selected  a  priori.  For  the  present 
purpose, however, this may be acceptable since it is known that the transverse cracks 
grow from the free edge. 
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Figure 2. Schematic representation (with exaggerated stiffness loss) of load-displacement relations.
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Given a certain inhomogeneous scaling field, there is the question of whether it should be 
applied to strength and/or to toughness. If the weak spot is understood as a void or cluster of 
voids it is sensible to apply the same reduction to both strength and toughness, whereas when 
the variations in strength are understood as representing variations in the stress field due to 
unequal fiber distribution it is more reasonable to apply variations to strength only. 

Simulations  have been performed to test  the different  strategies for inhomogeneous fields 
with a transverse ply thickness of 1 mm (corresponding to a [02/904]s-layup with elementary 
plies of 0.125 mm).  Because the stiffness loss due to the transverse crack is minimal,  the 
response is visualized by means of load-dissipation graphs, rather than the more usual load-
displacement, i.e. the total energy dissipation is used on the horizontal axis. Load-dissipation 
plots for six different cases are shown in Figure 4: the three different fields described above 
are each applied firstly to scale only the strength, and secondly to scale both strength and 
toughness. 

Several observations can be made from Figure 4. The case with t90 = 1 mm is a thick ply case, 
which can be observed from the sharp load drop that follows the initial peak in all cases. The 
load drop occurs  when  damage around the weakest  spot  of the cross section propagates 
through the thickness. In the case with the single defect, the load drop is followed by a clear 
plateau of approximately constant load, representing the phase at which the crack grows from 
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Figure 4. Development of load-level during simulation with spatially varying properties according to the three 
different fields in Figure 1.

Figure 3. Scaling fields for strength (and possibly fracture toughness) with three different strategies.
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the defect to the opposite boundary. This plateau is the load level that corresponds to the 
theoretical  thin  ply  strength.  Also  for  the  cases  with  random  strength  distribution,  this 
propagation load level is retrieved, although there are oscillations around it. These oscillations 
are much more pronounced when the fracture toughness is also varied, as the toughness is the 
key parameter  for the thin ply propagation  stress  level.  The most  pronounced load drops 
correspond with phases in the simulations where the crack reaches a free edge.

The height of the initial peak is the most important output value of these simulations because 
it corresponds to the stress level at which the crack would appear in reality and, hence, defines 
the in situ strength. The particular choice for the inhomogeneous property fields is of great 
influence on this value. It is in all cases determined by the weakness of the weakest patch of  
several  neighboring elements.  The scattered  field therefore gives  the highest  initial  value. 
Varying toughness along with the strength leads to a decrease in the peak load level because 
damage in the weakest spot develops faster.

The main conclusions in this section are that the type of variation does not influence the 
averaged propagation stress level (thin ply in situ strength) while it does influence the peak 
load level (thick ply in situ strength). None of the cases reveal how the characteristics of the 
variation should be related to the real microstructure,  but in all  cases there is freedom to 
calibrate the weakness of the weakest spot. Since none of the three strategies is clearly more 
realistic, the “defect” strategy is chosen for convenience. Simulations with this strategy are 
much more efficient and robust because the response is optimally smooth when the crack 
propagates  from  a  single  weak  spot  through  an  otherwise  homogeneous  cross  section. 
Moreover, the results are more easily interpretable because the model is deterministic and 
because the propagation stress level is obtained as a clear plateau.

4 In situ effect with multiple elements across the thickness of a ply

In this section, a study is presented into modeling the effect of ply thickness on the in situ  
strength. A single defect is inserted at the free edge as motivated in the previous section. 
Resulting strength values are compared with theoretical values from Dvorak and Laws [4] and 
with experimental observations from Crossman and Wang [10,11]. 
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Figure 5. In situ effect as simulated with multiple elements across the thickness.
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The applied defect  has the same characteristics  in  all  simulations.  At its  center,  which is 
located at the free edge and mid-height of the transverse ply, the strength and toughness are 
reduced to zero. The defect has a radius of 0.25 mm over which the properties gradually  
increase to their normal values. The strength and toughness away from the defect are equal to 
120 N/mm2 and 0.17 N/mm respectively. Of these, the latter is used as a fitting parameter for 
the thin ply regime where it is noted that the best fit has been obtained with a value that is  
lower than the 0.22 N/mm that gave the best fit with the analytical model by Dvorak and 
Laws. The input strength works as a  cap value for the maximum in situ strength that can be 
obtained. 

Results are shown in Figure 5. It can be observed that the in situ effect is captured very well 
in the simulations. The increase in strength as the ply thickness decreases is captured, as well 
as the constant strength for thicker plies. The transition between the thin ply range and the 
thick  ply  range  is  characterized  in  the  simulations  as  the  transition  between  stable  and 
unstable crack growth. In the thick ply cases, the peak load level is higher than the load level 
at which the crack propagates in a stable manner as illustrated in Figure 2.

5 In situ effect with single element across the thickness of a ply

Next, the number of elements is reduced by using only one element across the thickness of 
each  ply  (counting  the  90  ply  block  with  variable  thickness  as  a  single  ply).  The 
displacements can vary only linearly through the ply thickness, which means that, as long as 
the interface is rigid, transverse cracks cannot open. As a consequence, there is no energy 
release  due  to  insertion  of  a  discontinuity  and  the  in  situ  effect  cannot  be  reproduced. 
However, this changes when the interface is modeled as elastic (see Figure 6). In that case, 
there can be significant crack opening without delamination. The transverse ply can unload 
near  the  crack  and elastic  energy is  being  released  as  the  crack  propagates  in  transverse 
direction. 

The propagation load level or thin ply strength that is obtained here depends on the value of 
the dummy stiffness of the interface as well as on the fracture toughness. When the dummy 
stiffness is made inversely proportional to the ply thickness, the trend in the strength follows 
that of theory accurately, as illustrated Figure 7. While in the previous section the toughness 
was a fitting parameter, here a range of toughness values can match the data if the dummy 
stiffness is scaled with the same value for all thicknesses. The results shown in Figure 6 are 
obtained with  a  fracture  toughness  of  0.22 N/mm and interface  stiffness  K  = 2.35G23/t90. 
Regarding the thin ply strength, the in situ effect is captured very well.  For the thick ply 
strength, however, the constant value from theory and experiments is not obtained. The thick 
ply strength is related to propagation in thickness direction and this event cannot be captured 
with a single element. The trend of increasing strength for increasing ply thickness is due to 
the fact that in these simulations the initial defect is smeared out over the thickness, which 
means that the weak spot becomes less weak when the thickness increases.
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Figure 6. Side view of final deformation for three different cases: multiple elements across the thickness (left), 
single element with rigid interface (middle) and single element with deformable interface (right); shading 

indicates displacement in load direction.
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To show that  the  proportionality  of  the  dummy stiffness  to  the  ply  thickness  is  crucial, 
additional results are presented for a case where a single value for the dummy stiffness is used 
for the whole range of thicknesses (see Figure 7). For these simulations a value of K = 40·103 

N/mm3 was used, which corresponds to the value for t = 0.3 mm from the previous series. In 
this case, the in situ effect is captured much less realistically.

6 Conclusions

In this paper, it has been shown for the first time that the in situ effect with respect to the 
transverse strength in composite laminates can be captured with cohesive zone analysis. For 
initiation  of  failure,  a  weak spot  must  be  present  in  the  potential  crack  plane.  The most 
convenient choice is to predefine a single defect with reduced strength and toughness on the 
free edge.

The load level at which the crack grows in transverse direction depends on the thickness of 
the  ply  and on the  fracture  toughness.  Besides  this  load  level  associated  with  transverse 
propagation,  another  critical  load  level  exists  which  is  associated  with  propagation  in 
thickness  direction.  This  second critical  load  level  is  influenced  by the magnitude  of  the 
predefined defect, but not by the ply thickness. For thin plies, the in situ strength is governed 
by transverse propagation, while through-thickness propagation is critical for thick plies. 

Stress relaxation due to crack opening plays an important role in the crack propagation which 
governs the thin ply in situ strength. This crack opening cannot be captured when only one 
element is used through the thickness. However, when shear lag is introduced by making the 
interface deformable, the dependence of the propagation load level on the thickness can be 
captured with cohesive a method with a single element per ply. Crucial for a proper in situ 
effect is that the stiffness of the interface is inversely proportional to the thickness of the 
transverse  ply.  For  the  thick  ply  strength,  which  is  related  to  through-thickness  damage 
growth, a single element through the thickness does not suffice.
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Figure 7. In situ effect as simulated with single element through the thickness of the transverse ply; with 
interface stiffness inversely proportional to the ply thickness (left) and with constant interface stiffness (right)
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