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Abstract 
In the proposed contribution, effect of the shear correction function will be originally studied 
and evaluated in the modal FGM beams analysis. Spatial continuous variation of the beam 
material properties has been considered. The shear correction function will be calculated 
from the shear strain energy equation including the spatial Poisson’s ratio variation. The four 
coupled differential equations have been derived and used in the modal analysis of the FGM 
beams. The 2nd order beam theory and the longitudinal varying Winkler elastic beam 
foundation will be considered. 
 
 
1 Introduction 
For homogeneous material properties of the whole beam the shear correction factor is a 
constant and depends on geometry of the beam cross-sectional area. Using the expression for 
quadratic shear stress distribution for calculation of the shear strain energy and putting it 
equal to the shear strain energy of the first order shear deformation theory, the shear 
correction factor can be calculated [1], [2], [3]. As shown in [4], the shear force deformation 
effect influences also the behavior of sandwich and composite beams. Similar effect occurs 
also in the Functionally Graded Material (FGM) beams with continuous or discontinuous 
transversal or spatial variation of material properties. In [5], the shear force deformation effect 
in FGM beams has been originally described using the shear correction function. If the 
material properties change in longitudinal beam axis the shear force deformation effect also 
changes in this direction. The average value of the shear correction function (the average 
shear correction factor) has been calculated and implemented into the transfer relations for 
deformation and modal analysis of the FGM beams. Using of the average shear correction 
factor makes the calculation simpler, but a stronger longitudinal non-linear distribution of the 
shear deformation effect can affect the calculated results in negative sense remarkable. A 
constant Poisson’s ratio has been used in the most considerations of the shear force 
deformation effect. 
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The four coupled differential equations of the homogenized functionally graded material 
(FGM) beam deflection and their solution will be presented in the proposed contribution 
which will be used in modal analysis of the beams with polynomial continuous longitudinal 
and continuous symmetric transversal variation of material properties. The 2nd order beam 
theory and the longitudinal varying Winkler elastic beam foundation will be considered. 
Effect of the shear correction function (without its averaging) will be originally studied and 
evaluated. The shear correction function will be calculated from the shear strain energy 
equation, where the non-constant Poisson’s ratio will be considered. 
 
 
2 Shear force correction function derivation 
Several shear theories are known, which differ each to other with degree of the beam cross-
section deformation. As has been shown in the literature, the shear force effect is also not 
negligible in the analysis of the composite structures which are made as sandwich or 
multilayer structures [6], [7]. Similar effect has been also shown by FGM structures [5], [8] 
which are made of continuous or discontinuous variation of material properties. By the 
transversal variation of material properties the shear force effect is constant for whole beam, 
but its value differ from the standard value known from the shear theory of beams made of 
homogenous material. The ideal shear force stiffness is reduced with the shear correction 
factor in the 2nd order shear deformation theory. If the material properties vary in longitudinal 
direction the shear correction factor vary also in this direction. The shear correction function 
has to be considered. 
Let us consider a two nodal straight beam element with constant rectangular cross-sectional 
area bhA =  and quadratic moment of inertia 12/3bhI =  (Figure 1). 
The FGM of this beam arises from mixing two components (formally named as matrix and 
fibres) that are approximately of the same geometrical form and dimensions. The continuous 
spatial variation of the effective material properties can be caused by continuous spatial 
variation of both the volume fraction and material properties of the FGM constituents. Both 
the fibers volume fraction ( )yxv f ,  and the matrix volume fraction ( )yxvm ,  are chosen as a 

polynomial functions of x, and with continuous and symmetrical variation through its height h 
with respect to the neutral plane of the beam. The volume fractions are assumed to be constant 
through the cross-section depth b. At each point of the beam it holds: ( ) ( ) 1,, =+ yxvyxv mf . 

The values of the volume fractions at the nodal points are denoted by indices i and j. The 
assumption of polynomial variation enables an easier establishing of the beam equations and 
allows modeling many common continuous variations of beam parameters. 
The material properties of the constituents (fibres - ( )yxp f ,  and matrix - ( )yxpm , ) vary 

analogically as stated by the variation of the volume fractions. For effective material property 
( )yxp , in the real beam we have got: 

 

( ) ( ) ( ) ( ) ( )yxpyxvyxpyxvyxp mmff ,,,,, += .   (1) 
 

In our case the elasticity modulus( )yxE , , Poisson ratio( )yx,ν , and mass density ( )yx,ρ  
have been calculated by expression (1). The FGM shear modulus can be calculated by 
expression: 
 

( ) ( )( )yx

yxE
yxG

,12

),(
,

ν+
= .    (2) 
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If the constituents Poisson’s ratio are approximately of the same value and the constituents’ 
volume fraction variation is not strong, then the FGM shear modulus can by calculated using 
a simplification: 
 

( ) ( )
ξ

yxE
yxG

,
, = ,     (3) 

 

where ξ is an average value of the function ( ) ( )( )yxyx ,12, νξ +=  
 

( ) dxdyyx
hL

L
h

h
∫ ∫ 










=

−
0

2/

2/

,
11 ξξ .                 (4) 

 

 
 

Figure 1. Real and homogenized FGM beam element. 
 
 

The direct integration method [9] will be used for the homogenization of the spatial varying 
material properties (1). From the assumption that the respective property (e.g. stiffness) of the 
real beam must be equal to the analogical property of the homogenized beam, the 
homogenized longitudinal elasticity modules for: tension – compression ( )xENH

L , bending 

( )xEMH
L , shear ( )xGH

L , and the homogenized mass density( )xH
Lρ , can be calculated [14], 

respectively. The homogenized material properties have been used in establishing the shear 
correction function and the differential equations of free vibration of the homogenized FGM 
beam. 
Figure 2 shows character of the shear stress distribution in the rectangular cross section at the 
position x. 
 

 
Figure 2. Shear stress distribution. 

 

The shear stress ( )yx,τ in the cross section of real beam has symmetric non-linear distribution 

over the beam height (the non-linearity depends of the ( )yxE ,  variation) [9]: 
 

 ( ) ( )
( ) ( )ydyyxE
xB

xQ
yx

h

yI
∫=

2/

,,τ  (5) 
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where ( ) ( )
/ 2

2

/ 2

,
h

I

h

B x by E x y dy
−

= ∫  is the effective bending stiffness of the real FGM beam, and 

( )xQ  is the shear force at position x. The shear stress ( )xτ  in the homogenized beam is 
assumed as constant over the cross-section: 
 

( ) ( )
A

xQ
x =τ       (6) 

 

Using the expression (5) for the calculation of the strain energy in the cross-sectional area of 
the real FGM beam and putting it equal to the strain energy in the homogenized beam of the 
first order shear deformation theory, the shear correction function ( )xks  can be calculated: 
 

( )
( )

( )
( )
( )dA

yxG

yx

dA
xG

x

xk

A

A
H
Ls

∫

∫
=

,

, 2

2

τ

τ

     (7) 

 

The integration in (7) has been solved with software MATHEMATICA [10]. Some numerical 
problems can occur in computation of ( )xks  due to by complicated variations of the shear 

modulus ( )yxG , . The shear correction function ( )xks  will later input into the free vibration 
equations of the FGM beam through the stiffness ratio function: 
 

( ) ( )
( ) ( )AxGxk

IxE
x H

L
s

MH
L=ς      (8) 

 

An average shear correction factor: 
 

( )dxxk
L

k
L

ssm

∫=
0

1
     (9) 

 

can be, under some circumstances, considered in calculation of the parameter (7) that can be 
used in simpler but less accurate modal analysis of the FGM beams. 
If the shear force effect has been neglected, the ratio function ( )xς  is equal to zero. The above 
presented method can be also applied for other cross-section types. 
 
 
3 Mathematical base of the differential equations derivation 
According to [13], the main equations of the 2nd order beam theory (including the inertia 
forces) are: 

' µω= − + − 2R q kw w     (10) 
' µω ϕ= + + 2M Q m      (11) 

' 'ϕ ϕ κ= − ⇒ = − − eM
M EI EI

EI     (12) 

' ϕ ϕ′= + ⇒ = −% %
%

Q
w Q GAw GA

GA     (13) 
 

Here, q is the distributed transversal load (see Figure 3); m is the distributed bending moment; 
eκ is he applied beam curvature; k is the modulus of elastic Winkler foundation; µ is the mass 
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distribution; µ is the mass inertial moment distribution; ω is the natural eigenfrequency; R is 
the transversal force; Q is the shear force; M is the bending moment; ϕ  is the angle of cross-

section rotation; w is the beam bending; EI is the bending stiffness and AG
~

 is the reduced 
shear stiffness of the homogenized FGM beam. We assume that all the above quantities are 
the polynomial functions of x. 
 

dx

N
M

R

R + dR

N + dN

M + dM

q

m

(k − µω2)w

n

(k
x
− µω2) u

kw
′

µω2ϕ

 
 

Figure 3. The force equilibrium in the deformed element configuration. 
 

The relation between the transversal and shear force is: 
 

( ) ' ψ= − + − +II IIQ k N w N R    (14) 
 

where NN II ≡  is the resultant axial force of the 2nd order beam theory, ψ  is the beam 

rotation imperfection, and k is the elastic foundation modulus for beam rotation. The 
derivation of the four coupled differential equations and their solution for the buckling force 
and eigenfrequency will be described in [14] in detail. 
 
 
4 Numerical experiments 
Cantilever beam (Fig. 4) is made of a mixture of titanium carbide TiC (fibres) – the elasticity 
modulus 0.480=fE GPa, the mass density 4920=fρ kgm-3, the Poisson’s ratio 20.0=fν ; 

and aluminum Al 6061-TO (matrix) – the elasticity modulus 0.69=mE GPa, the mass density 

2700=mρ kgm-3, the Poisson’s ratio 33.0=mν ; [11]. Its geometry is given with: 

01.0== hb m, 1.0=L m.  

 
Figure 4. Cantilever beam with planar variation of material properties. 

Volume fraction variation - planar variation along the beam length and beam height. 
 
Variation of the fibres volume fraction has been chosen as the polynomial function: 
 

( ) 2222
323

4000020020000000
3

400
3

400000000
, yxyx

xyx
yxv ++−−=  
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that is drawn in Figure 4 – left side.  
Using the extended mixture rule (1), (2), a spatial distribution of the effective elasticity 
modulus ( )yxE ,  in [GPa], the Poisson’s ratio ( )yx,ν [-], shear modulus ( )yxG ,  in [GPa] and 

mass density ( )yx,ρ  in [kgm-3] have been calculated: 
 

( ) 6916440000822001082254800010548, 222273238 +++×−−×= yxyxxyxyxE   (15) 
 

( ) 33.00.52000.26106.23334.173107334.1, 222263237 +−−×++×−= yxyxxyxyxν  (16) 
 

( )
)0.104000.52102.56666666.34610466666666.366.2/(

)6916440000822001082254800010548(,
222263237

222273238

yxyxxyx

yxyxxyxyxG

−−×++×−
+++×−−×=

(17) 

       

( ) 270010888444000104441029610269, 25222834239 +×++×−×−×= yxyxxyxyxρ  (18) 
 

The effective beam properties have been calculated using the expressions derived in [14], it 
was obtained: 

( ) 8210310 1006.21037.110133333333.9 ×+×+×−= xxxENH
L  [kPa]  (19) 

 

( ) 8210311 10156.31011.41074.2 ×+×−×= xxxEMH
L  [kPa]  (20) 

 

( )
41139

2967

10116329771.210430131676.6

10187975901.310552673524.81015909138.8

xx

xxxGH
L

×−×+

×+×+×=
[kPa] (21) 

 

( ) 0.34400.7400010933333333.4 235 ++×−= xxxH
Lρ  [kgm-3]  (22) 

 

The shear stress distribution (5) at several position of x and ( ) 1=xQ , are: 
 

( ) 28413 10311787072.11056273.157.13046,0 yyyx ×−×−==τ  [kPa]  (23) 
 

( ) 28412 10002023471.510326588425.317.14584,5.0 yyyLx ×−×−==τ  [kPa] (24) 
 

( ) 29413 10152295633.110840985443.123.17301, yyyLx ×−×+==τ  [kPa] (25) 
 

which are drawn in Figure 5 – left side. 
 

kPat

t    = L
t    = 0.5L

t    = 0

        
 

Figure 5. Distribution of the shear stresses (24), (25), (26), the shear correction function. 
 

The homogenized bending stiffness used in the shear stress calculation (5) is: 
 

( ) 263.025.3434.228 23 +−= xxxBI  [kNm2]    (26) 
 

The shear correction function calculated with (7) is: 
( ) 432 2.1510923.3766441.262906959.0469249.0 xxxxxks +−++=   (27) 
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Longitudinal distribution of the shear correction function is shown in Figure 5 – right side, its 
value is 0.469 at point i and 0.929 at point j. The average shear correction factor (9) is: ksm = 
0.75. The FGM cantilever beam (Figure 4) clamped at the left side and resting on the Winkler 
elastic foundation has been studied by modal analysis. Strong Winkler elastic foundation 
modulus has been chosen as a varying non-linear function of x: 

( ) 2600010005000 xxxk +−= [kN/m2]. The first three bending eigenfrequencies have been 
found using the differential equations (10) – (13) for 3 options of the shear force deformation 
effect consideration: without the shear effect - ( ) 0=xς ; with the average shear correction 

factor - 75.0=smk  ; and with the shear correction function - ( )xks . The same problem has 
been solved using a very fine mesh – 12000 of 2D PLANE42 elements of the FEM program 
ANSYS [12], where the material properties (15) - (18) have been used. The average relative 
difference ∆ [%] (for three chosen values of N force of each) between eigenfrequencies 
calculated by our method and the ANSYS solution has been evaluated. 
To show the effect of normal force N on the eigenfrequency, its positive value (tension), 
negative value (compression), and equal to zero have been taken into account. The nonzero 
values of the axial force have been chosen by II

KiNN 75.0±≅  in all cases calculated, where 
II
KiN is the 2nd order beam theory buckling force. The buckling force has been calculated from 

the differential equations by setting 0=ω . Tables 1, 2 and 3 contain the 1st, 2nd and 3rd 
bending eigenfrequency. 
 

N [kN] 
Option: 

52 0 -52 ∆  [%] II
KiN  [kN] 

( ) 0=xς  2 048.9 1 599.2 808.4 1.35 -67.71 

75.0=smk  2 031.5 1 585.8 797.0 0.30 -67.24 

( )xks  2022.3 1 582.8 797.7 0.11 -67.31 

ANSYS 2 019.5 1 582.6 796.2   
 

Table 1. The 1st eigenfrequency. 
 

N [kN] 
Option: 

52 0 -52 ∆  [%] II
KiN  [kN] 

( ) 0=xς  9 133.8 8 432.4 7 654.7 9.23 -67.71 

75.0=smk  8 719.5 8 018.9 7 238.4 3.81 -67.24 

( )xks  8 556.1 7 865.3 7 092.5 1.80 -67.31 

ANSYS 8 399.6 7 727.2 6 970.0   
 

Table 2. The 2nd eigenfrequency. 
 

N [kN] 
Option: 

52 0 -52 ∆  [%] II
KiN  [kN] 

( ) 0=xς  23 301.6 22 687.3 22 056.0 20.46 -67.71 

75.0=smk  21 087.4 20 447.2 19 791.2 8.56 -67.24 

( )xks  20 460.5 19 820.2 19 171.3 5.24 -67.31 

ANSYS 19 418.0 18 838.0 18 235.0   
 

Table 3. The 3rd eigenfrequency. 
 

The eigenmodes for all the considered options (Table 1 to Table 3) have been calculated 
which will be presented in [14] in detail. 
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5 Conclusion 
The shear correction function of the second order shear deformation theory has been derived 
from the shear strain energy equation. This has been then used in the four coupled differential 
equations derivation, which were used in modal analysis of the FGM beams. The effect of 
axial force and varying Winkler foundation has been considered. 
The obtained solution results in the Table 1 to Table 3 induce following general conclusions: 
the average difference between our and the benchmark ANSYS eigenfrequency solution 
increases with the eigenfrequency number; the best agreement of both results is for the 1st 
eigenfrequency; the shear force effect is meaningful in all calculated cases; the most accurate 
results have been obtained by consideration the shear correction function ( )xks  in the 
eigenfrequency calculation; using the average shear correction factor makes the shear effect 
calculation simpler but the results are of love accuracy comparing to the solution with the 
shear correction function consideration; inconsistent consideration of the Poisson’s ratio 
variation (as a constant for example) can affect the solution results by the FGM beams.  
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