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Abstract

In the proposed contribution, effect of the shearection function will be originally studied
and evaluated in the modal FGM beams analysis.i8paintinuous variation of the beam
material properties has been considered. The slwearection function will be calculated
from the shear strain energy equation includinggpatial Poisson’s ratio variation. The four
coupled differential equations have been derived ased in the modal analysis of the FGM
beams. The 2nd order beam theory and the longitidnarying Winkler elastic beam
foundation will be considered.

1 Introduction

For homogeneous material properties of the whokbéhe shear correction factor is a
constant and depends on geometry of the beam seati®nal area. Using the expression for
quadratic shear stress distribution for calculatodrthe shear strain energy and putting it
equal to the shear strain energy of the first orsleear deformation theory, the shear
correction factor can be calculated [1], [2], [Bk shown in [4], the shear force deformation
effect influences also the behavior of sandwich eohposite beams. Similar effect occurs
also in the Functionally Graded Material (FGM) bsamith continuous or discontinuous
transversal or spatial variation of material praojest In [5], the shear force deformation effect
in FGM beams has been originally described usireg gshear correction function. If the
material properties change in longitudinal beans dle shear force deformation effect also
changes in this direction. The average value ofsifiear correction function (the average
shear correction factor) has been calculated amdemented into the transfer relations for
deformation and modal analysis of the FGM beam#$ndJef the average shear correction
factor makes the calculation simpler, but a stromgegitudinal non-linear distribution of the
shear deformation effect can affect the calculat=siilts in negative sense remarkable. A
constant Poisson’s ratio has been used in the mwssiderations of the shear force
deformation effect.
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The four coupled differential equations of the hgemized functionally graded material
(FGM) beam deflection and their solution will beepented in the proposed contribution
which will be used in modal analysis of the beanith wolynomial continuous longitudinal
and continuous symmetric transversal variation atemal properties. The"®order beam
theory and the longitudinal varying Winkler elasheam foundation will be considered.
Effect of the shear correction function (withowt @veraging) will be originally studied and
evaluated. The shear correction function will bécwated from the shear strain energy
equation, where the non-constant Poisson’s rafido@iconsidered.

2 Shear force correction function derivation

Several shear theories are known, which differ gacbther with degree of the beam cross-
section deformation. As has been shown in thealitee, the shear force effect is also not
negligible in the analysis of the composite streesuwhich are made as sandwich or
multilayer structures [6], [7]. Similar effect hbgen also shown by FGM structures [5], [8]
which are made of continuous or discontinuous Wanaof material properties. By the
transversal variation of material properties theasHorce effect is constant for whole beam,
but its value differ from the standard value knofram the shear theory of beams made of
homogenous material. The ideal shear force stiéfriesreduced with the shear correction
factor in the 2 order shear deformation theory. If the materialperties vary in longitudinal
direction the shear correction factor vary alsahiis direction. The shear correction function
has to be considered.

Let us consider a two nodal straight beam eleméiit @onstant rectangular cross-sectional
area A =bh and quadratic moment of inertla= bh® /12 (Figure 1).

The FGM of this beam arises from mixing two compasagformally named as matrix and
fibres) that are approximately of the same geowratform and dimensions. The continuous
spatial variation of the effective material propestcan be caused by continuous spatial
variation of both the volume fraction and matepabperties of the FGM constituents. Both
the fibers volume fractiorv, (x,y) and the matrix volume fractiom, (x,y) are chosen as a
polynomial functions ok, and with continuous and symmetrical variatiorotiyh its heighh
with respect to the neutral plane of the beam.vidieme fractions are assumed to be constant
through the cross-section defithAt each point of the beam it holds; (x, y)+v, (x y)=1.
The values of the volume fractions at the nodahgoare denoted by indicesandj. The
assumption of polynomial variation enables an eastablishing of the beam equations and
allows modeling many common continuous variatiohiseam parameters.

The material properties of the constituents (fibrep, (x, y) and matrix - p,(xy)) vary
analogically as stated by the variation of the mmdufractions. For effective material property
p(x y)in the real beam we have got:

p(x y) = v, (% y)p; (% y)+ Vi (% y) (% y). 1)

In our case the elasticity modulix, y), Poisson ratie(x y), and mass density(x, y)

have been calculated by expression (1). The FGMrsheodulus can be calculated by
expression:

E(xY)

R )

(2)
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If the constituents Poisson’s ratio are approxihyabé the same value and the constituents’
volume fraction variation is not strong, then tH@NF shear modulus can by calculated using
a simplification:

E(XYy
G(xy)= (xy) , ©)
¢
where £is an average value of the functidfx, y) = 21+v(xy))
1c(1 h/2
=== [&(x yjdy dx. 4
Lo h -h/2
a) real beam/link ¥ b) homogenized beam/link
p.(x=0y) g/x:(),y) v(x=0,y) vx=Ly) px=Ly) p,(x=Ly) Ple=0ye<h/2,h/2>) pi(x=L,ye<h/2,h/2>)
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Figure 1. Real and homogenized FGM beam element.

l"‘ M

The direct integration method [9] will be used fbe thomogenization of the spatial varying
material properties (1). From the assumption thatreéspective property (e.g. stiffness) of the
real beam must be equal to the analogical propeftythe homogenized beam, the

homogenized longitudinal elasticity modules fomsien — compressiorE™" (x) bending

EM (x), shearG'(x), and the homogenized mass dengftyx), can be calculated [14],

respectively. The homogenized material properties hBeen used in establishing the shear
correction function and the differential equatiafidree vibration of the homogenized FGM

beam.
Figure 2 shows character of the shear stresshdistvn in the rectangular cross section at the

positionx.
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Figure 2. Shear stress distribution.

The shear stresgx, y)in the cross section of real beam has symmetrielinear distribution
over the beam height (the non-linearity dependhe)E(x y) variation) [9]:

r(xy)= s (();)) th(x, y)ydy (5)
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h/2

where B, (x) = I by E( x y d\is the effective bending stiffness of the real FG&am, and

-h/2
Q(x) is the shear force at position The shear stress(x) in the homogenized beam is
assumed as constant over the cross-section:

r()= 2 (6)

Using the expression (5) for the calculation of st@in energy in the cross-sectional area of
the real FGM beam and putting it equal to the steaiergy in the homogenized beam of the

first order shear deformation theory, the shearextion functionk®(x) can be calculated:

ke(x) = J/; %%)fA
{ TGE;yy)dA

The integration in (7) has been solved with sofeMslIATHEMATICA [10]. Some numerical
problems can occur in computation kf(x) due to by complicated variations of the shear

modulus G(x, y). The shear correction functiok?(x) will later input into the free vibration
equations of the FGM beam through the stiffnegs fahction:

(7)

__E™MK)
et 0n ®
An average shear correction factor:
1 L
kem= = J ke(xlx (9)

can be, under some circumstances, considereddnlatbn of the parameter (7) that can be
used in simpler but less accurate modal analysiseoFGM beams.
If the shear force effect has been neglected atie function¢(x) is equal to zero. The above

presented method can be also applied for othes-@estion types.

3 Mathematical base of the differential equations derivation
According to [13], the main equations of th® Brder beam theory (including the inertia
forces) are:

R'=-q+ kw- o/ w (10)
M'=Q+m+ faf¢ (11)
=M M=—EIg-EI®
El (12)
Q

W'=¢+&\ = Q=GAw- GA 13)

Here,q is the distributed transversal load (see Figuren3} the distributed bending moment;
k°is he applied beam curvatuteis the modulus of elastic Winkler foundationjs the mass

4
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distribution; zzis the mass inertial moment distributioajs the natural eigenfrequendy;is
the transversal forc&) is the shear forceyl is the bending moment is the angle of cross-

section rotationw is the beam bendingl is the bending stiffness an@A is the reduced
shear stiffness of the homogenized FGM beam. Wenasghat all the above quantities are
the polynomial functions of.

toro1 g
t—ttf (k — pw?)w
It

M
N
<JTT <o n M + dM
" -_— . i; N +dN
-
(ky — pw?) u =
dr R+dR
o

Figure 3. The force equilibrium in the deformed element ggunfation.
The relation between the transversal and sheag ferc
Q=-(k+N")Yw- Nyg+ F (14)

where N" =N is the resultant axial force of thé%2rder beam theoryy is the beam

rotation imperfection, andkis the elastic foundation modulus for beam rotatidine
derivation of the four coupled differential equatoand their solution for the buckling force
and eigenfrequency will be described in [14] inadet

4 Numerical experiments

Cantilever beam (Fig. 4) is made of a mixture t#rtium carbide TiC (fibres) — the elasticity
modulus E, =480 .0GPa, the mass densify, = 492n°, the Poisson’s ratiz, = 020
and aluminum Al 6061-TO (matrix) — the elasticitpdulus E,, = 690GPa, the mass density
P = 2700kgm?, the Poisson’s ratiov,, = 033 [11]. Its geometry is given with:
b=h=001m, L=01m.

L

Figure 4. Cantilever beam with planar variation of matepedperties.
Volume fraction variation - planar variation alothg beam length and beam height.

Variation of the fibres volume fraction has beensd#n as the polynomial function:

_ 400000006%y°  400x°
v(x y)= 2 -

—20000006*y* + 200x* + 40000y°



ECCM15 - 15™ EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012

that is drawn in Figure 4 — left side.
Using the extended mixture rule (1), (2), a spatistribution of the effective elasticity
modulusE(x, y) in [GPal], the Poisson’s ratie(x, y)[-], shear moduluss(x, y) in [GPa] and

mass density(x, y) in [kgm*] have been calculated:
E(x y) = 548x10°x°y? —-548000¢ —822x10"x?y? +82200¢* +16440009° + 69 (15)
v(x y) = —1.7334x10" X°y? +1733334¢° + 2.6x10°x?y? — 260x* —52000y? + 033 (16)

G(x y) = 648x10°x°y? —548000¢ —822x10"x?y? +82200¢* +16440004” + 69)

17)
1(266- 3466666666107 Xy? +3466666666¢ + 52x10°x%y? — 520x* ~10400Q0y?)
o(x y) = 269x10°x°y? — 296x10°x* — 444x10°xy? + 444000¢ +888x10°y? + 2700 (18)

The effective beam properties have been calculasaty the expressions derived in [14], it
was obtained:

EM(x) = -9.13333333%10° %% + 137x10°x% + 206x10° [kPa] (19)
EM (x) = 274x10"x° - 411x10°x? + 3156x10° [kPa] (20)

G (X) =8.1590913& 10 +8.55267352410°x + 3.18797590% 10° X

[kPa] (22)
+6.43013167610°x°> — 2.11632977%10"x*

o (x) = —4.93333333%10°X® + 7400Q0x2 + 34400 [kgm™] (22)
The shear stress distribution (5) at several mosiix andQ(x) =1, are:
r(x=0,y)=1304657-1.56273x10"°y* -1.31178707%1C°y? [kPa] (23)
r(x = 05L,y)=1458417 - 3.32658842% 10" y* - 5.00202347%10°y? [kPa]  (24)
r(x = L,y)=1730123+1.84098544% 10" y* —1.15229563%10°y? [kPa] (25)

which are drawn in Figure 5 — left side.
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Figure5. Distribution of the shear stresses (24), (25)),(& shear correction function.

The homogenized bending stiffness used in the stesms calculation (5) is:
B, (x) = 22834x° — 3425x* + 0263 [kNm?] (26)

The shear correction function calculated with §7) i
k®(x) = 0.469249+ 0.90695% + 262441x* - 376623x° +151092x* (27)

6
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Longitudinal distribution of the shear correctiamétion is shown in Figure 5 — right side, its
value is 0.469 at pointand 0.929 at poirjt The average shear correction factor (9ki8:=
0.75. The FGM cantilever beam (Figure 4) clampetth@teft side and resting on the Winkler
elastic foundation has been studied by modal aisalgirong Winkler elastic foundation
modulus has been chosen as a varying non-linear function ®&f
k(x)=5000—1000<+6000<2 [kN/m?]. The first three bending eigenfrequencies havenbe
found using the differential equations (10) — (i8)3 options of the shear force deformation
effect consideration: without the shear effect(x)=0; with the average shear correction

factor - k*" = 075 ; and with the shear correction functiork(x). The same problem has
been solved using a very fine mesh — 12000 of 2BNH42 elements of the FEM program
ANSYS [12], where the material properties (15) 8)(have been used. The average relative
difference A[%] (for three chosen values ™ force of each) between eigenfrequencies
calculated by our method and the ANSYS solutionldesen evaluated.

To show the effect of normal ford¢ on the eigenfrequency, its positive value (tension)
negative value (compression), and equal to zere lheen taken into account. The nonzero

values of the axial force have been chosenNoil+075N,, in all cases calculated, where

N, is the 2% order beam theory buckling force. The bucklingcéohas been calculated from

the differential equations by setting=0. Tables 1, 2 and 3 contain th& 2" and &
bending eigenfrequency.

_ N [KN] 52 0 -52 A [%] ngi [kN]
Option:
c(x) =0 2048.9 1599.2 808.4 1.35 -67.71
k=075 | 20315 1585.8 797.0 0.30 -67.24
kS(x) 2022.3 1582.8 797.7 0.11 -67.31
ANSYS 20195 1582.6 796.2

Table 1. The f'eigenfrequency.

N [kN] 52 0 -52 A [%] N [KN]
Option:
c(x) =0 9133.8 8432.4 7 654.7 9.23 -67.71
k"= 075 | 87195 8 018.9 7238.4 3.81 -67.24
kS(x) 8 556.1 7 865.3 7 092.5 1.80 -67.31

ANSYS 8 399.6 7727.2 6 970.0
Table 2. The 2 eigenfrequency.

N [kN] 52 0 -52 A [%] N [KN]
Option:
c(x) =0 233016 | 22687.3 22056.0 20.46 -67.71L
k"= 075 | 21087.4| 20447.20 19791.2 8.56 -67.24
ks(x) 20460.5| 19820.2 191713 5.24 -67.31

ANSYS 19418.0 18 838.0 18 235.0
Table 3. The 3 eigenfrequency.

The eigenmodes for all the considered options @dblto Table 3) have been calculated
which will be presented in [14] in detall.
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5 Conclusion

The shear correction function of the second orleasdeformation theory has been derived
from the shear strain energy equation. This has ben used in the four coupled differential
equations derivation, which were used in modal yamlof the FGM beams. The effect of
axial force and varying Winkler foundation has beensidered.

The obtained solution results in the Table 1 tol@&binduce following general conclusions:
the average difference between our and the benh®BISYS eigenfrequency solution
increases with the eigenfrequency number; the dgstement of both results is for thg 1
eigenfrequency; the shear force effect is meaningfall calculated cases; the most accurate

results have been obtained by consideration tharsberrection functionk*(x) in the

eigenfrequency calculation; using the average sbeaection factor makes the shear effect
calculation simpler but the results are of loveusacy comparing to the solution with the
shear correction function consideration; inconsisteonsideration of the Poisson’s ratio
variation (as a constant for example) can affegtstiiution results by the FGM beams.
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