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Abstract  

This paper presents a model to intelligently optimise the fibre architecture of components 

manufactured from discontinuous fibre meso-scale composites. A stiffness optimisation 

algorithm is adopted to derive distributions of section thickness and constituent properties 

concurrently, whilst minimising material cost. A spare wheel well geometry is used to 

demonstrate the optimisation algorithm and the quality of the optimisation is assessed with 

the convergence of the structural performance. Use of structural optimisation facilitates 

properties closer to that of a textile fibre benchmark with little cost impact to the final 

component. 
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1 Introduction  

Directed Carbon Fibre Preforming (DCFP) is an automated process for producing complex 

3D discontinuous carbon fibre preforms for liquid moulding. Fibre deposition is robotically 

controlled and net-shape, offering excellent repeatability and low wastage. DCFP offers 

greater design flexibility compared with conventional laminated composites, as the fibre 

orientation distribution, fibre volume fraction, and fibre length can all be continuously varied 

locally in the component according to the robot and chopping apparatus parameters. In 

addition, recent studies have shown that significant gains in mechanical performance can be 

achieved by introducing fibre alignment [1]. 

 

Current DCFP components however, are often manufactured as direct substitutes for existing 

metallic counterparts using the same geometry, assuming a homogeneous isotropic fibre 

architecture. The lack of suitable design tools prevents the full potential of these versatile 

materials from being exploited. Traditional optimisation routines are primarily concerned with 

structural issues, such as the overall weight and stiffness of the component. Topology, shape 

and size are the three main categories of structural optimisation, and a number of methods are 

well established for designing with isotropic materials. Non-linear programming algorithms, 

such as sequential programming [2] and the ‘method of moving asymptotes’ [3] are iterative 

mathematical approaches commonly utilised in optimisation routines. However, the 

application of these methods involves constant re-evaluation of the design objectives and 

constraints for each iteration, which makes the process very computationally expensive and 

consequently unsuitable for large structures. 
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Metaheuristic optimisation methods are alternative approaches which imitate natural 

phenomena. Genetic algorithms (GA) are the most widely used type of metaheuristic method 

in structural optimisation [4], but the computational time is strongly dependent on the size of 

the solution, which can be a problem for larger structures with continuous design variables. 

There are several other methods such as cellular automata [5] and optimality criteria 

approaches [6], which use simple local rules to update each design variable. These methods 

provide very similar solutions to the mathematical programming approaches, but with lower 

computational cost, and are therefore more practical for problems with complex or large-scale 

geometries. 

 

With the continual development of composite materials, research into structural optimisation 

has been extended to suit composites, where material properties can be easily varied across a 

component. GAs are generally the preferred method for laminated composites [7]. The 

variation of the laminate lay-up sequence is greatly limited by the manufacturing route, and 

optimisation of the local thickness is difficult because of the ply-based lay-up. This simplifies 

somewhat the application of GAs to discrete problems with a very small population of 

searching points. Consequently the computational cost becomes insignificant for laminate 

based composites.   

 

Structural optimisation of meso-scale discontinuous fibre architecture composites involves a 

combination of continuous and discrete design variables. The local thickness can be 

continuously varied across the component and is independent of the fibre architecture, 

whereas a continuous change of fibre length or tow size is unrealistic and therefore can only 

be varied in discrete regions. It is worth noting that the section stiffness of a structure is 

determined by its cross sectional dimensions and effective material properties, where the 

effective material properties for discontinuous fibre composites are a function of the fibre 

architecture. Therefore, the optimisation problem for DCFP can be solved in two stages: The 

first stage is to evaluate the optimised thickness contour of the component and the 

corresponding local material properties, using structural optimisation algorithms. The second 

stage is to determine the optimised fibre deposition strategy based on the structural 

optimisation results. This can be implemented using decision making methods such as 

weighted score and TOPSIS [8], providing the material properties database and the design 

preference. The spray strategy can be calculated following the optimisation and the results can 

be compared back to the ideal case. 

 

This paper aims to establish a structural optimisation algorithm to evaluate the thickness 

contour and local assignment of material properties, utilising the design flexibility of DCFPs. 

A stiffness optimality criteria is derived and the method of Lagrangian multipliers is adopted 

to determine the local recurrent criteria. The local section thickness and stiffness values are 

updated concurrently through an iterative process, with a material cost model employed to 

determine the contribution of thickness and modulus increments during each iteration. The 

algorithm is validated using a semi-structural automotive component for a niche vehicle. The 

optimisation quality is assessed by comparing the component stiffness, deflection and final 

mass for the optimised design against a baseline textile solution.  

 

2 Structural Optimisation Methodology 

2.1 Problem definition 

The stiffness is often the primary issue in most structural design problems. Stiffness 

optimisation aims to achieve the stiffest structure whilst fulfilling all of the design constraints, 

so that the overall deflection of the part is minimised under the prescribed load case. The 
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objective of maximising the structural stiffness is equivalent to minimising the total strain 

energy within the structure [9]. It has been proposed in [10] that, for a single load case 

evaluation subjected to a constant volume constraint, the total strain energy is minimised 

when the strain energy density distribution through the part is uniform. However, this average 

strain energy density criteria was derived assuming the material properties are constant. When 

designing a shell-like structure the local thickness is normally the only variable to be updated 

during a size optimisation process. The use of DCFP has introduced the local effective 

modulus of the material as an additional design variable, therefore a new stiffness optimality 

criteria has been determined to optimise the thickness and modulus values concurrently. 

 

With the additional stiffness design variable, a second constraint is required to determine the 

limits when updating the local modulus values. Restricting the material cost is a reasonable 

approach, since increasing the section thickness requires a larger quantity of material to be 

used, while increasing the modulus potentially requires increased fibre volume fraction or a 

smaller fibre tow size, further increasing the unit cost of the material. The mechanical 

performance for meso-scale discontinuous fibre architecture composites is linked to the 

homogeneity of the bundle ends and the number of fibre to fibre contacts [11] and this 

therefore means that smaller, more expensive tows make stronger and stiffer components. The 

optimisation problem can be constructed as 

 

min U(E, t)  

subject to V(t) = V0, C(E, t) = C0 

and E ≥ Emin, t ≥ tmin 

(1) 

 

where E and t denote the modulus and thickness design variables respectively. U denotes the 

total strain energy in the structure. V and C denote the overall volume and material cost of the 

structure, and V0 and C0 are the target volume and cost. Emin is the lower bound of the 

modulus, which has been taken from the literature [11], and tmin is the lower bound of 

thickness value to prevent local buckling of the structure. The minimum thickness is 

influenced by the lower modulus bound, since the stiffness and strength of the component 

changes with thickness due to the homogeneity effects. 

 

2.2 Stiffness optimality criteria and the Lagrangian multiplier approach 

The optimisation process is performed based on the results from finite element analyses of the 

structure. The overall strain energy, component volume and material cost can be individually 

expressed as a summation of the corresponding value from each element in the part. The 

optimality criterion is derived by solving the Karush–Kuhn–Tucker (KKT) conditions of the 

Lagrangian expression. The Lagrangian expression from equation (1) is 

 

L = U + λ1(V – V0) + λ2(C – C0) + λ3(Emin - Ei) + λ4(tmin - ti) (2) 

 

where λ1, λ2, λ3 and λ1 are the Lagrange multipliers corresponding to each constraint. The 

subscript i denotes the element number. The stationary of the Lagrangian leads to the 

following KKT conditions: 

 
  

  
   

   

   
     

   

   
       (3) 
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If the lower bounds for modulus and thickness are inactive, then λ3 and λ1 are both equal to 

zero. It was stated in [12] that for an optimal design problem with the number of variables 

equal to the number of active constraints, the solution yields a fully utilised design. The 

stationary conditions in this case produce n constraint equations with n unknowns, and each 

can be solved independently of the Lagrangian multipliers. (i.e. each constraint equation is 

sufficient to determine one design variable). Therefore, Equation (3) and (4) can be 

rearranged as: 
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   (5), (6) 

 

The optimality criteria can be employed based on the expressions derived in Equation (5) and 

(6) with an iterative scheme. The recurrence relations for modulus and thickness may be 

written as: 
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  (7), (8) 

 

where the superscript k denotes the iteration number, and r and n are the moving limit 

parameters to define the step size of each iteration.  

 

The algorithms described in Equation (7) and (8) require the partial derivatives of U, V and C 

to be calculated for each element at each iteration. Assuming the section forces and moments 

applied to each element remain constant, the elemental strain energy can be written as: 

 

    
 

 
    

           
 

 
    

     
        (9) 

 

where [di] and [Fi] are the element displacement and force vectors, and [Ki] is the section 

stiffness matrix of the ith element. Therefore, the partial derivatives of Ui are: 
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     (10), (11) 

 

 

The elemental volume is simply a function of thickness, thus 
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     (12), (13) 

 

where Ai is the area of the ith element.  
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The material cost model employed here assumes a basic linear relationship between the 

material cost and the modulus value, such that: 

 

             (14) 

where the factor α can be estimated by calculating the material cost for a range of DCFP  

laminates with known properties. The current optimisation method uses a constant cost as an 

equality constraint, thus the evaluation of the actual cost value is unnecessary. In a more 

refined solution, a more extensive database of material properties and costs would be used to 

provide greater fidelity. The value of α is taken as unity in the current study, which denotes 

the ratio of the current cost to the constraint value. Therefore; 

 
   

   
       , 

   

   
       (15), (16) 

 

The values of the Lagrangian multipliers λ1 and λ2 need to be correctly determined such that 

the overall volume and cost constraints are satisfied at every iteration, i.e. 
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      (17), (18) 

 

Substituting Equation (10), (11), (12), (13), (15) and (16) into Equation (17) and (18) yields a 

system of two non-linear equations with two unknowns λ1 and λ2, where  λ1 can be 

determined by Equation (17), and the value of λ2,    
    and   

    can be calculated 

subsequently. 

 

The design variables are also subjected to bound constraints, Emin and tmin. A reduced step size 

method is adopted here to prevent the updated value of each design variable exceeding its 

limit.  If the output value at the current step falls below the lower bound when updating Ei and 

ti at the kth step (using Equations (7) and (8)), the step size parameter (r or n) is adjusted 

globally until the bound limits are satisfied. 

 

Solving the Lagrangian multipliers is the classical approach to solving optimisation problems 

with equality constraints. Other optimality criteria methods do exist [13], but they don’t 

calculate the value of the Lagrangian multipliers and every iteration is performed in two steps. 

The first step solves the unconstrained problem by estimating a value for the objective 

function, and the second step is to rescale the design variables so that the constraints are 

satisfied. The rescaling method can often slow down the convergence, and in some cases 

convergence may not be achieved. 

 

3 Case Study  

3.1 Application description 

An automotive component has been selected to demonstrate how the model can be 

successfully used to optimise the fibre architecture of discontinuous fibre components. The 

component represents the floor structure at the rear of the vehicle within the boot (trunk) area, 

which primarily houses the spare wheel, but also a pair of 12V batteries. The ‘spare wheel 

well’ (see Figure 1) is required to be sufficiently stiff to avoid NVH issues within the 

passenger cell, but also needs to be durable, as the exterior surface is exposed to impact from 
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road debris. The production component comprises an inner and outer skin with local areas of 

foam core to create a sandwich construction. The layup has been simplified into a monolithic 

component (ignoring cores) for the purpose of this study and the assumed layup is presented 

in Figure 1. A single ply of 650gsm 2×2 twill weave carbon fabric is sandwiched about 3 plies 

of 600gsm 3×1 twill weave glass, in order to prevent a conductive path between the battery 

terminals and the body in white.  

 

A simple replacement for the glass/carbon woven composite has been proposed using an all-

carbon fibre layup. The ply count has been reduced to just three 650gsm 2×2 twill weave 

carbon fibre plies, in order to provide a comparable maximum deflection to the glass/carbon 

hybrid. However the anticipated reduction in component mass cannot be justified in this case 

because of the added material cost, which is typically greater than 50%. An optimised DCFP 

replacement has therefore been designed using the current algorithm, to demonstrate that the 

performance of DCFP can compete against continuous fibre solutions, but at a fraction of the 

cost. The material cost for DCFP is approximately 50% lower than a textile solution because 

no intermediate processing is required and there is no fibre wastage. The process is also fully 

automated, which eliminates all touch labour to create further cost savings. 

 

Figure 1 Left: Un-deformed shape of the spare wheel well. (0.01MPa uniform pressure applied on the pink 

surface) Right:  Ply layup arrangement of the current composite laminate. 

Table 1 Material properties for composites layup model and initial values for DCFP model. 

 E1 E2 Nu12 G12 G13 G23 Ply thick Density 

 (MPa) (MPa)  (MPa) (MPa) (MPa) (mm) Kg/m
3
 

3x1 Twill Glass Fibre  43400 9770 0.256 4090 4090 3560 0.44 * 1946 

2x2 Twill Carbon Fibre  132500 10530 0.256 4444 4444 3787 0.66** 1534 

DCFP (6K, 60mm, 36% vf) 30000 30000 0.3 11540 11540 11540 2.00 1421 

* Idealised laminate contains 2×0.22mm UD plies. 

** Idealised laminate contains 2×0.33mm UD plies. 

3.2 Finite Element modelling 

Structural optimisation is performed using FEA of the component at the macro level. The 

CAD geometry of the wheel well is defined as a 3D conventional shell, and exported into 

ABAQUS CAE for mesh generation and analysis. Conventional shell elements in ABAQUS 

represent the geometry of a reference surface, and the thickness and material properties can be 
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defined though the shell section definition. The optimisation strategy can be adopted for both 

6-node (STRI65) and 8-node (S8R5) quadratic elements. 

 

The model is subjected to a static load case using appropriate boundary conditions and is 

analysed in ABAQUS/Standard. A pressure of 0.01MPa has been applied to the flat regions of 

the wheel well and an encastre constraint has been applied to the top rim, as indicated in 

Figure 1. The mid surface of the wheel well is defined as the reference surface. The section 

stiffness for the benchmark model is defined by creating and assigning a composite layup in 

ABAQUS CAE, simplifying the twill weave plies into individual unidirectional plies at 0º and 

90º. The section stiffness for the DCFP model is defined by specifying the shell thickness and 

the effective composite properties using a *DISTRIBUTION tab, where the effective 

composite properties are defined by isotropic material definitions with linear elastic stress-

strain relationships. The thickness and modulus values are updated on an element by element 

basis during the optimisation process. In addition, the lower bounds for the design variables 

are tmin=1mm and Emin=15,000MPa. The material properties for both models are summarised 

in Table 1.  

 

3.3 Results 

A summary of the FE results is presented in Table 2 for both the continuous fibre benchmark 

model and the optimised DCFP model. The performance is compared in terms of the total 

strain energy, maximum deflection, total mass and specific stiffness. It is worth noting that at 

this stage, since the fibre architecture has not been determined, the variation of the effective 

composite density is ignored. Therefore, the constant volume constraint is effectively a 

constant mass constraint in this example (the mass of the two DCFP models is the same).  

 

Rapid convergence is observed for both the strain energy and the deflection; with both values 

converging approximately after the third iteration. Figure 2 includes the von Mises stress plot 

and the deflection plot for the benchmark model (glass/carbon) and the optimised DCFP 

model. The optimised structure exhibits lower peak and mean values for the von Mises stress 

and the magnitude of the deflection is reduced.  

 

According to Table 2, moving towards an all-carbon fibre woven solution over the 

glass/carbon hybrid reduces the maximum deflection from 3.85mm to 2.62mm, whilst also 

reducing the component mass by 15%, resulting in an increase in specific stiffness of 70%. 

Whilst this is an attractive solution, high material costs prohibit this from being commercially 

viable. Table 2 indicates that an optimised DCFP model can compete very well against a 

woven carbon solution at a fraction of the cost. The deflection of the un-optimised DCFP 

model is 3.66mm, which is similar to that of the continuous glass/carbon hybrid (specific 

stiffness of 1.3). However, the specific stiffness increases to 1.6 following the optimisation, 

which compares very well against the value of 1.7 for the continuous carbon fibre model. The 

current optimisation method reduces the total strain energy for the DCFP model by 16.8% and 

the maximum deflection by 17.8% during the optimisation process. Optimisation yields a 

24% reduction in mass compared with the glass/carbon benchmark.  

 

The thickness and modulus distributions for the optimised DCFP model are presented in 

Figure 3. Local changes in thickness and modulus appear in the regions where local stress 

concentrations exist (as shown in Figure 2(a) and (b)). These continuously variable 

distributions are currently unrealistic from a manufacturing perspective, since the fibre 

deposition process is difficult to control to this level of precision. Discrete regions of high 

stiffness material need to be applied over much larger areas. This can be addressed with future 
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developments, by introducing a zoning algorithm to group and then smooth areas of similar 

moduli. Conversely, a continuously varying thickness can be achieved by varying the cavity 

height of matched tooling.  

 

Figure 2 The von Mises stress (MPa) contour for (a) continuous glass/carbon fibre benchmark, (b) optimised 

DCFP. The magnitude of deflection (mm) contour for (c) benchmark and (d) optimised DCFP. 

It should be noted that the method proposed in this paper is only concerned with optimising 

the stiffness of the component at this stage. In the case of any other design objective, such as 

strength or impact requirements, new optimisation criteria must be derived for the new 

problem. It is anticipated that the mass saving will be affected when optimising for these 

additional design objectives, as the section thickness will locally increase.  

 
Table 2 FEA results for the benchmark model and the optimised DCFP. 

 Total Strain Energy Max Deflection Total Mass Specific Stiffness* 

 (kN.mm) (mm) (kg) (unity) 

Continuous Glass/carbon  1215 3.85 4.18 1 

Continuous Carbon 837 2.62 3.56 1.7 

DCFP (un-optimised) 1230 3.66 3.16 1.3 

DCFP (optimised) 1023 3.01 3.16 1.6 

*Values normalised to the benchmark case of continuous glass/carbon 

 

4 Conclusions 

A stiffness optimisation method has been proposed to concurrently optimise the thickness and 

modulus distribution for a DCFP component. The stiffness of the component is maximised 
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under the constraints of constant volume and material cost. The optimisation algorithm is 

derived using the stiffness optimality criteria, and the Lagrangian multipliers are solved for 

each optimisation constraint.  

 

The optimisation method has been demonstrated using a spare wheel well model. The 

component was originally designed with laminated carbon and glass fibre composites. Results 

have suggested that the current method can effectively improve the structural stiffness of the 

component and hence reduce the strain energy and deflection when the component is 

subjected to a prescribed load case.  

Figure 3 Thickness map (left, unit: mm) and modulus map (right, unit: MPa) for the optimised DCFP model. 
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