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Abstract 
Mode I, Mode II and mixed mode fracture mechanics test specimens, well suited for the 

characterization of large-scale bridging in terms of traction-separation laws using a J 

integral approach, are presented. They all allow stable crack growth. J integral equations are 

obtained in closed analytical form and are independent of details of the traction-separation 

law representing the bridging. This allows the determination of the traction-separation laws 

without the further numerical modeling of the test specimens. Differences between J integral 

fracture specimens and traditional linear-elastic fracture specimens are highlighted. 

  
 

1 Introduction  
Some fiber composites develop a crack bridging zone during interlaminar cracking 
(delamination) or intralaminar cracking (splitting). Crack bridging is usually considered as 
being a desirable phenomenon, since it leads to increasing fracture resistance and enhanced 
damage tolerance [1]. The size of the bridging zone can be large in comparison with the so-
called K-dominant region, i.e., the region near the crack tip where the stress field follows the 
singular crack tip stress field of linear-elastic fracture mechanics (LEFM). When the bridging 
zone extends in the wake of the crack outside the K-dominant zone (large-scale bridging, 
LSB), as shown in Figure 1, the deformation of the specimen outside the K-dominant zone 
influences the development of the crack bridging and thus the crack growth. LEFM criteria 
for crack propagation, such as critical values of stress intensity factors or energy release rates, 
are then insufficient to characterize crack growth since they do not account for the energy 
dissipation in the bridging zone [2, 3]. The mechanical response of the bridging zone can be 
described in terms of traction-separation laws, so-called bridging laws or cohesive laws [3].  
It is major challenge to determine traction-separation laws for real materials. A widely used 
approach is to perform fracture experiments and record relations between load and 
displacement of the specimens. Next, a numerical model (e.g., incremental finite element 
models) is made of the specimen. The model includes a cohesive zone in which traction-
separation laws can be prescribed. Idealized traction-separation laws having a pre-determined 
shape, e.g., a bi-linear traction-separation relation, are used. Key parameters such as the peak 
traction value and steady-state fracture resistance (area under the traction-separation curve) 
are identified by iterative guessing, e.g., by conducting several simulations using different 
trial traction-separation parameters; the parameter set that gives the closest agreement with 
the experimental data is then taken to represent the true traction-separation law. While such an 
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approach is feasible and gives very satisfactory results [4-6], it requires new simulations for 
each new material being tested. It is thus a more complicated procedure than the analysis of 
fracture toughness for LEFM specimens, for which standard solutions are made once and for 
all and tabulated in hand books [7]. 
The aim of the present study is to present a general approach for the determination of traction-
separation laws for LSB problems, an approach that does not require finite element simulation 
of the specimen for each new material or interface tested. The proposed approach is based on 
the utilization of the path-independent J integral [8]. The J integral approach for determination 
of Mode I traction-separation laws was first proposed by Li and Ward [9], while J integral 
specimens for LSB problems were first considered by Suo et al. [2]. A J integral approach for 
the determination of mixed mode traction-separation laws was proposed by Sørensen and 
Kirkegaard [10]. In the present paper we briefly summarize the J integral approach and focus 
on specimen for which (a) the crack growth is stable, so that experimental data can be 
obtained for the whole separation process and thus enables the determination of the complete 
traction-separation law and (b) the J integral solution can be obtained in closed analytical 
form, independent of the details of the traction-separation laws (whish are initially unknown). 
Full filling (b) enables the analysis of the J integral fracture mechanics test specimens as 
standard solutions similar to the LEFM hand book solutions for the stress intensity factors. 
 

 

Figure 1. Photo of a glass fibre composite experiencing large-scale crack bridging. 

 
 
2 J integral analyses of a bridged crack  
First we will briefly review the salient feature of the J integral approach for the determination 
of traction-separation laws. Consider a fracture process zone consisting of a sharp crack and a 
bridging zone. Evaluating the J integral along a local path just around the fracture process 
zone (bridging zone and crack tip) give during cracking [10]: 
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where RJ  is the fracture resistance, nT  and tT , denote the normal and shear tractions, 

respectively, n∆  and t∆  are the normal and tangential crack opening displacements, *

n∆  is the 

end-opening, *

t∆  is the end-sliding, see Fig. 2, and 0J  is the crack tip fracture energy. 

Equation (1) can be given a physical interpretation: The J integral equals the sum of the work 
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per unit area of the normal and shear tractions at the end of the bridging zone and the energy 
dissipation at the crack tip (the crack tip fracture energy).  

In general, both nT  and tT  are functions of both n∆  and t∆ . Furthermore, it is assumed that 

the critical crack openings exist, 0

n∆  and 0

t∆ , beyond which the tractions vanish. Assuming 

that the tractions are derivable from a potential function, the mixed mode traction-separation 
relations can be obtained as [10] 
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Thus, if the fracture resistance, RJ , the end-opening, *

n∆ and the end-sliding, *

t∆  are recorded 

during a series of mixed mode fracture experiments, the traction-separation laws can be 
obtained by partial differentiation. To do so, we need test specimen configurations for which 
the J integral can be obtained from external loads, preferably in closed analytical form. 
 

 

Figure 2. Schematics of a crack bridging problem. 

 
3 J integral specimens  
Fig. 3 shows a family of J integral fracture mechanics specimen. They are DCB (double 
cantilever beam) specimens consisting of slender beams loaded by bending moments and 
axial (but not transverse) forces. They share the common feature that the tractions along the 
external boundaries are normal stresses acting parallel to the cracking plane (the x1-direction). 
Then an evaluation of the J integral along the external boundaries gives equations that are 
independent of the crack length and details of the traction-separation laws of the bridging 
zone.  
Fig. 3a shows a pure Mode I specimen consisting of a symmetric DCB loaded by pure 
bending moments. Assume that the material is orthotropic with a symmetry plane parallel to 
the cracking plane (the x1-direction). Then, the J integral evaluated around the external 
boundaries gives under plane stress conditions [2] 
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where M is the applied bending moment applied to the beam-ends, B is the specimen width, H 

is the beam thickness, 11E  is the Young's modulus of the beam in the x1-direction. 

 

 

Figure 3. Family of J integral fracture specimens: (a) DCB specimen loaded with pure bending moments (Mode 
I), (b) DCB specimen loaded with axial forces and bending moments (mixed mode), (c) DCB specimen loaded 
with uneven bending moments (mixed mode) and (d) DCB specimen loaded with identical moments (Mode II). 

 
Fig. 3b shows a DCB specimen loaded with a combination of axial force, P, and a bending 
moment, M. The J integral result for this specimen configuration is (plane stress) [11]: 
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This is a mixed mode specimen. Mode I is obtained for P = 0 and Mode II is obtained for 
M/PH = -1/2.  
Another mixed mode specimen configuration is shown in Fig. 3c. This is a DCB specimen 
loaded with uneven bending moments (DCB-UBM). The two bending moments, M1 and M2, 
are taken positive in the directions shown in the figure. The J integral evaluated around the 
external boundaries gives (plane stress) [12]: 
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Pure Mode I (Fig. 3a) is recovered for M1/M2 = -1 and pure Mode II is obtained for M1/M2 = 1 
(Fig. 3d). Then, the J integral result can be expressed as (plane stress): 
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Note that since the equation for J for all specimen configurations are independent of the crack 
length, they will give stable crack growth, so that complete traction-separation laws can be 
obtained. Note also that the J integral equations only depend on a single orthotropic elastic 

parameter, the Young's modulus 11E . The J integral results, Eqs. (3) - (6), are all independent 
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of the other orthotropic elastic parameters (the Young's modulus in the x2-direction, the in-
plane shear modulus and the two Poisson's ratios).  
In summary, the test specimen configurations shown in Fig. 3 all have J integral equations 
that depends only on applied load (moments and axial forces), a Young's modulus of the test 
material and the specimen dimensions. Conduction fracture mechanics experiments using 

these J integral specimens enable the calculation of the fracture resistance, RJ  directly using 

eq. (3) - (6). Furthermore, if the end-opening, *

n∆  and the end-sliding, *

t∆  are recorded during 

a series of mixed mode experiments, mixed mode traction-separation laws can be obtained by 
the procedure described above, i.e., by the use of eq. (2). This procedure only involves the 

fitting of RJ  as a function of *

n∆  and *

t∆  and performing partial differentiation. No further 

numerical simulations of the test specimen are required. No a priory knowledge or assumption 
is made regarding the specific shape or coupling of the mixed mode traction-separation laws. 
Examples of practical design of test device for the proposed J integral fracture specimen 
configurations of Fig. 3 can be found in the literature. The DCB loaded by pure bending 
moments (Fig. 3a) has been developed [13, 14]. The DCB loaded a combination of an axial 
force and a bending moment (Fig. 3b) is developed for testing in a scanning electron 
microscope [15]. Slightly different test configurations for the DCB-UBM were used by in 
studies of mixed mode cracking of adhesive joints [16, 17]. Determination of mixed mode 
traction-separation laws by the J integral approach has been demonstrated [18]. 
 
 
4 Discussion  

4.1 Difference between J integral and energy release rate equations 

For LSB problems, G≠extJ  (with G being the LEFM potential energy release rate) for most 

fracture mechanics test specimen configurations [3]. Then, LEFM solutions for G  or stress 
intensity factors are not directly applicable for LSB problems. To illustrate the difference, 
consider the standard Mode I DCB-specimen loaded with transverse force. An accurate 
calibration of the energy release rate is given by [19]  
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where the second term in the right hand side parenthesis accounts for the so-called root root 

rotation [20]. For long cracks, Ha >> , eq. (7) approaches  
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which is the results that can be obtained e.g. by the compliance method modeling the 
cantilever beams using the ordinary, simple Bernoulli-Euler beam theory.  
The J integral solution for the DCB specimen loaded with wedge forces is [21] 
 

B

P
J ext

θ2
= ,       (9) 

 

where P denotes the applied transverse force and θ  is the rotation of the beam at the point 
where the transverse for is applied, see Fig. 4. Eq. (9) applies for both LSB and for small-
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scale fracture process zone, i.e., LEFM conditions. Consider first crack growth under LEFM 

conditions for which G=extJ . From simple beam theory, the rotation angle can be estimated 

using a cantilever beam that is built-in at one end and loaded with the transverse force at the 
other end (this approach will underestimate the beam rotation of the DCB specimen since the 
beam model assumes no rotation at the build-in end, i.e., neglects the root rotation). The result 
obtained from a standard hand book of beam-theory is 
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Inserting Eq. (10) into Eq. (9) recovers - as expected - the LEFM solution for long cracks, Eq. 
(8). Consider next the effect of LSB. Observe that, as shown in Fig. 4, the normal tractions in 

the bridging zone restrain the beam deflection and reduces the rotation of the beam-end, θ , 
and thereby reduces (by (9)) the J integral value. Consequently, the value of J of a DCB 

specimen having LSB is less than the LEFM energy release rate result, Eq. (7), G<extJ . 

Thus, in case the LEFM result is used for the calculation of fracture resistance for LSB 
problems, the fracture resistance will be overestimated. This overestimation can be significant 

[2]. Since the precise value of θ  (and thus extJ ) depends on the details of the traction-

separation laws, extJ  cannot be determined in closed analytical form for a DCB specimen 

loaded with transverse force. An experimental determination of extJ  for LSB problems 

requires the measurement of θ ; this has been made by Stigh and co-workers using a shaft-
encoder [22]. Measurements of rotations are also required for mixed mode specimen loaded 
with transverse forces, such as the mixed mode bending specimen (MMB) developed by 
Reeders and Crews [23] and the mixed mode double cantilever beam (MCB) specimen of 
Högberg and Stigh [24]; a J integral determination require the measurement of two 
independent rotation of the two beams. This has been accomplished experimentally by the use 
of digital image correlation [25].  
4.2 The concept of steady-state cracking 

The proposed J integral fracture mechanics test configuration has another attractive feature: 
They enable crack growth in steady-state. In order to clarify this, we will briefly explain the 
concept of steady-state cracking. When the end-opening reached the critical separation 

( 0*

nn ∆=∆  for pure Mode I), the bridging zone is said to be fully developed. With further crack 

extension, the fracture resistance remains at the same, steady-state value, ssJ . However, this 

does not necessary imply that the cracking occurs in a self-similar fashion. For the standard 
DCB specimen loaded with wedge forces, the length of the fully-developed bridging zone, L, 
becomes shorter with increasing crack length [2]. This occurs because the beam curvature and 
deflection change as the crack length increases. As illustrated in Fig. 4, the beam experiences 
the largest curvature (and largest bending moment) at the crack tip, decreasing along the 
length of the specimen, approaching zero curvature at the point of application of the 
transverse forces.  
In contrast, for the proposed DCB specimen loaded with axial forces and bending moments 
(Fig. 3), the specimens retain the same curvature when the bridging zone is fully-developed. 
As a result, a fully-developed fracture process zone translates along the specimen in a self-
similar fashion under LSB. This is denoted steady-state cracking. Large-scale steady-state 
cracking is unique to slender beams [2]. One important implication of steady-state cracking is 
that all bridging ligaments will undergo the same opening-history since the steady-state 

bridging zone length, ssL , remains the same for a fully-developed bridging zone. With all 
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ligaments undergoing the same cyclic opening history, it is anticipated that the steady-state 
specimen of Fig. 3 are better suited for the study of cyclic crack growth involving LSB.  
 

 

Figure 4. Illustration of deflection and rotation of unbridged and bridged specimens. 

 
 
5 Conclusions  
A family of DCB specimens loaded with axial forces and bending moments are proposed for 
fracture mechanical characterization of fracture problems that involves large-scale bridging. 
These specimens can be used in connection with a J integral approach for the determination of 
traction-separation laws in a fairly standard manner. As such, they can be considered as being 
a new generation of fracture specimens suitable for large-scale bridging problems, while most 
standard linear elastic fracture mechanics test specimens are restricted to be used for small-
scale bridging (linear elastic fracture mechanics) problems.  
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