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Abstract 
The behaviour of a composite beam with multiple reinforcing fibers under periodic traction- 
flexure is analysed through a fracture mechanics-based model.  In more detail, an edge-
cracked beam under external loads is also subjected to the crack bridging reactions due to 
the fibers.  Assuming a rigid-perfectly plastic bridging law for the fibers and a linear-elastic 
law for the matrix, the statically indeterminate bridging forces are obtained from 
compatibility conditions.  Under assigned load paths, shakedown conditions are explored by 
making use of the Melan’s theorem, here reformulated for the discrete problem under 
consideration, where crack opening displacement at the fiber level plays the role of plastic 
strain in the counterpart problem of an elastic-plastic solid.  The limit of shakedown is 
determined through an optimization procedure based on a linear programming technique. 

 
 

1 Introduction 
Several composite materials used in different engineering applications consist of a brittle 
matrix and ductile reinforcements (bars, wires, fibers, etc.).  By incorporating such 
reinforcements into the matrix, several mechanical properties are enhanced, including: 
cracking resistance, ductility, impact resistance, fatigue strength.  Cracks might develop in 
structures of reinforced brittle-matrix composites, so that the overall mechanical behaviour, 
including the capacity to dissipate energy under cyclic loading, would strongly be affected by 
the crack bridging reactions of the reinforcements.  Moreover, the progressive crack growth 
under cyclic loading influences the bridging behaviour, and causes significant changes in the 
mechanical properties of the above materials (strength, toughness, stiffness, hysteretic 
behaviour, etc.), eventually leading to failure. 
Numerous theoretical models are available in the literature to describe the crack bridging 
behaviour of fiber-reinforced composites.  For instance, under monotonic loading, the 
mechanics of elastic fibers, which might debond at the fiber-matrix interfaces, is investigated 
in Refs [1-4] with reference to their bridging effect on matrix cracking.  Under periodic 
loading, the crack bridging behaviour, including cyclic debonding at fiber–matrix interface of 
fibers, is analysed in Refs [5-9] with the aim of predicting also the fatigue strength of the 
composite materials.  According to the model proposed by the first two authors in Refs [10, 
11] (see also Ref. 12), a fibrous composite beam with an edge crack submitted to cyclic 
bending moment can be examined by assuming a crack bridging model with a general linear 
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isotropic tensile softening/compressive hardening law for the fibers and a linear- elastic law 
for the matrix.  Elastic and plastic shakedown phenomena can be discussed in terms of 
generalized cross-sectional quantities and, by employing a fatigue crack growth law, the 
mechanical behaviour up to failure can be captured. 
Within the framework of the LEFM-based model proposed in Refs [10, 11], the present paper 
is devoted to investigate, under combined axial force and bending moment describing general 
periodic load paths, the conditions of (elastic) shakedown (in the following the plain word 
‘shakedown’ is used to mean ‘elastic shakedown’) by exploiting the Melan’s theorem [13].  
As a matter of fact, a parallel between the classical problem of an elastic-perfectly plastic 
body, for which the Melan’s theorem was originally formulated, and the present crack 
bridging model with rigid-plastic fibers is drawn in the following.  Then, the limit condition 
of shakedown under any traction-flexure history within a given load domain is determined 
through an optimization procedure. 
 
2 The crack bridging model 
Consider an edge-cracked portion of fiber-reinforced composite beam with a rectangular 
cross-section under time-varying axial force F(t) and bending moment M(t) (Fig.1), where 
time t should be regarded as ordering variable of the events, being the problem under 
consideration nominally static.  The crack (which might possibly be regarded as an existing 
flaw) in the lower part of the beam presents a depth a, and is assumed to be subjected to Mode 
I loading (i.e. the crack is normal to the longitudinal axis of the beam).  Unidirectional fibers 
are discretely distributed across the crack and oriented along the longitudinal axis of the 
beam.  The position of the i-th fiber ( ni ,...,1= ) is described by the distance ci with respect to 
the bottom of the beam cross-section.  Further, the relative crack depth ξ = a / b and the 
normalized coordinate ζi = ci / b are defined. 
The matrix is assumed to present a linear elastic constitutive law, whereas the fibers are 
assumed to behave as rigid-perfectly plastic bridging elements which connect together the two 
surfaces of the crack.  Hence, the rigid-perfectly plastic bridging law of the generic i-th fiber 
is characterized by an ultimate force iPF ,  (and iPF ,−  in compression), whichever of them 
exhibits the minimum absolute value [10, 11]. 
During the general loading process, brittle catastrophic fracture or compressive crushing of 
the matrix are disregarded.  Further, no edge crack is assumed to develop in the upper part of 
the beam.  Stable fatigue propagation of the initial crack due to cyclic loading is beyond the 
scope of the present investigation. 
Since the problem being examined is statically indeterminate, the unknown fiber reactions iF  
(positive if the fiber is under tensile loading) on the matrix can be deduced from n kinematic 
conditions related to the crack opening displacements iw  at the different fiber levels [10].  If 

iF  is equal to iPF , , the force of the i-th fiber becomes known, and the crack opening 

displacements are hereafter shown to depend on such a value.  Since the matrix is assumed to 
behave in a linear elastic manner, the crack opening displacement iw  at the i-th fiber level is 
computed through the superposition principle 

Fλλλw MN ++= MN      (1) 

where { }Tnww ,...,1=w  is the vector of the crack opening displacements at the different fiber 

levels, and { }TnFF ,...,1=F  is the vector of the crack bridging forces.  Further, 



ECCM15 - 15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

3 
 

{ }TnNN w,...,1λ=Nλ  is the vector of the compliances related to the axial force N, 

{ }TnMM w,...,1λ=Mλ  is the vector of the compliances related to the bending moment M, 
whereas λ  is a symmetric square matrix of order n, whose generic element ij represents the 
compliance ijλ  related to the i-th crack opening displacement and the j-th fiber force (see Ref. 
[10] and the analytical expressions of SIFs in Ref. [14], pp. 52, 55, 71). 
The incremental form of the governing Eq. 1 is (summation rule for repeated indices holds) 

jijiMiNi FMNw &&&& λλλ −+=        with  ni ,...,1=    (2) 

where dot symbol indicates time derivatives, being time the ordering variable, with 
dtFF ii ∫= &  and dtww ii ∫= & .  If the general i-th fiber is in the elastic domain, the 

corresponding increment of crack opening displacement iw&  is null, namely if 
0, =⇒< iiPi wFF & .  On the other hand, if the general i-th fiber is yielded ( iPi FF ,= ), the 

following two alternatives are possible: 00 >⇒= iii wFF &&  or 00 =⇒< iii wFF &&  (plastic-to-
elastic return).  In other words, we have : 

0>ii wF &   if iPi FF ,=  and 0=iF& ;         0=iw&  otherwise    (3) 
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      Figure 1. Schematic of the model. 

 
 
3 Shakedown and the Melan’s theorem in plasticity 
Let us consider a body made of an elastic-perfectly plastic material.  Strain is additively 
decomposed into elastic and plastic parts: 

p
ij

e
ijij εεε +=       (4) 

The plastic strain is defined by a convex yield condition 

0)( ≤ijσϕ       (5) 

and the associated flow rule 

ij

p
ij σ

ϕαε
∂
∂

= &&        (6) 

where α&  indicates a non-negative scalar plastic multiplier ( 0>α&  if 0=ϕ  and 0=ϕ& ).  The 
Drucker’s stability postulate holds [15]: 
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( ) 0* ≥− p
ijijij εσσ &   ijij σσ ,*∀   such that  ( ) 0* ≤ijσϕ  and ( ) 0=ijσϕ    (7) 

The elastic-plastic body under consideration is submitted to cyclic external loading with 
period T, such that an initial transient stage (leading to some possible mean values of load 
components) is followed by a cyclic stage.  At a certain instant, the material attains (possibly 
asymptotically) a steady state, where the stress becomes a periodic function with period equal 
to that of the external loading, that is, for a sufficiently high value of t  (possibly for ∞→t ), 
we get ( ) ( )Ttt ijij += σσ .   If plastic strain does not occur in the steady state but it is limited 
to a initial transient stage, shakedown (or adaptation) occurs. 
Shakedown conditions can be ruled out if one considers the linear elastic response e

ijσ  of the 
body under the external loading, namely the stress state, satisfying the equations of elastic 
equilibrium, that would develop in the body if its behaviour were perfectly elastic.  Such a 
time-varying stress state ( )te

ij ,xσ , function of the material point position x , is linked by a 
one-to-one relation to the load path.  If a body (submitted to a given periodic load path) 
shakes down, clearly there must exist (necessary condition) a time-independent self-balanced 
stress ( )xp

ijσ   ( 0, =p
iijσ  in V  and  0=i

p
ij nσ  on FS )  such that 

( ) ( )( ) 0, ≤+ xx p
ij

e
ij t σσϕ  t,x∀     (8) 

The Melan’s theorem [13] supplies a sufficient condition for shakedown, and its statement is 
as follows: for given load path, an elastic-perfectly plastic body will shake down if and only if 
there exists a time-independent self-balanced (residual) stress ( )xijρ  ( 0, =iijρ  in V and 

0=iij nρ  on FS ) that nowhere violates the yield criterion when superimposed onto the 
elastic stress in equilibrium with the given load path, that is (note the strict inequality): 

( ) ( )( ) 0, <+ xx ij
e
ij t ρσϕ  t,x∀     (9) 

An evident advantage of the Melan’s theorem is that the actual time-dependent elastic-plastic 
stress in the body does not have to be determined and, hence, no incremental analysis is 
required to assess shakedown conditions.  Instead, the elastic solution ( )te

ij ,xσ  is 
superimposed on a self-balanced stress distribution (which may be different from the actual 
one caused by the given load path) so that the resulting stress state is admissible with respect 
to yielding. 
Usually the external load path is not known a priori so that, typically, a family of load paths is 
considered by defining a load domain given by the max/min values of each single load 
component.  In more details, let the vector )(tP  collect the independent load components 

max,)( hh Ptα  ( ph ,...,1= ) with )(thα  time varying between min,hα  and hh μα =max, .  Therefore, 
the load domain is bounded by hyperplanes, and the shakedown condition of Eq. 9 has to be 
verified at a finite number of points corresponding to the vertexes, intersections of the 
hyperplanes.  If a proportional variation of the ranges of load components is assumed, 

μμμ === p...1  and, hence, the load domain varies in a homothetic manner, defined by the 
single load parameter μ .  In such a case, the maximum value of the load parameter μ  defines 
the shakedown limit. 
Extensions of the classical shakedown theory (concerned with elastic-perfectly plastic 
materials in small displacements and strains) to more general material models (such as to 
include non-linear hardening, rate-dependence, damage, non associative plasticity) and to 
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large displacements have been formulated (e.g. see Ref. [16]).  Investigations on shakedown 
conditions in elastic contact problems with Coulomb friction can be found in Ref. [17]. 
 
 
4. Shakedown limit in the crack bridging model 
Shakedown theory related to plasticity material model can be extended to the case of the 
present crack bridging model on the basis of the following similarities.  As a matter of fact, 
the stress state obtained from a linear elastic analysis can be regarded as the fiber forces due 
to zero crack opening displacements, that is, the forces which are proportional to the applied 
loads (axial force N(t) and bending moment M(t)).  Hence such a force vector )()0( tF  can be 
obtained by equating the right-hand member of Eq. 1 to zero: 

( ))()()( 1)0( tMtNt MN λλλF += −     (10) 

Then, the time-independent residual stress corresponds to the fiber forces )~(wF  due to non-
zero crack opening displacements w~ , namely according to Eq. 1: 

wλF ~1)~( −−=w      (11) 

The sufficient condition of the Melan’s shakedown theorem can hence be written as follows: 

p
wt FFF <+ )~()0( )(  t∀      (12) 

Considering the case of the rectangular load domain defined by max)()( NttN Nα=  
( NNN t μαα ≤≤ )(min, ) and max)()( MttM Mα=  ( MMM t μαα ≤≤ )(min, ), the condition of Eq. 
Eq. 12 has to be verified at the 4 vertexes (e.g. see the box path in Fig. 3c below).  If one 
assumes a homothetic variation of the load domain, a single load parameter μμμ == MN  is 
considered, and the shakedown limit is obtained from the following optimization procedure: 

{ }
( )μμ

μ 0w~,
max

≥
=SD       (13) 

such that 
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    (14) 

 
5. Illustrative example 
For illustrative purposes, let us consider a fiber-reinforced concrete edge-cracked beam with 
height b = 0.3 m, thickness t = 0.2 m, relative crack depth 2.0=ξ , submitted to general 
combinations of periodic axial force and bending moment within a rectangular domain 
defined by their min/max values.  Let us assume that maxmin, /1.0 NN pN =α  and 

maxmin, /1.0 MM pM =α , where pN  and pM  are the axial force and the bending moment, 
respectively, of first yielding in the most highly stressed fiber.  The concrete Young modulus 
E is assumed to be equal to 30 GPa.  Further, the concrete compressive strength and fracture 
toughness are assumed to be as high as to avoid crushing and brittle fracture of the matrix, 
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respectively.  Equally-spaced fibers characterized by an ultimate force =pF  5266 N and a 
spacing =Δc  2.2 mm are considered (case representative of long steel fibers of 0.5 mm diam-
eter, 5% volume fraction, 300 MPa yield stress), so that 27 fibers are intersected by the crack. 
By means the optimization procedure in Eqs 13 and 14, the shakedown limit can be obtained 
as the ratio maxmax / NM  is made to vary.  This leads to the normalized Bree-like diagram in 
Fig. 2, where the elastic domain is also sketched ( N715113=pN  and Nm358083=pM ). 
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Figure 2. Bree-like diagram showing the elastic domain and the shakedown domain 

 
In order to show the validity of the optimization procedure for determining shakedown limit 
(Eqs 13 and 14), two different periodic load paths (box path, 90° out-of-phase) are analysed 
(see Fig. 3, where the two histories of the loads  are presented for the first 5 cycles)  by means 
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Figure 3. Load time-histories in the case of maxmax / NM = 0.125 and SDμ  for (a) box path,  
(b) 90° out-of-phase path, and (c) corresponding load paths. 
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of the incremental procedure presented in Section 2 (see Eqs 2 and 3).  The ratio 
maxmax / NM  is chosen to be equal to 0.4, and the load parameter μ  is taken to be equal to 

SDμ  and to SDμ05.1 . 
In Fig. 4, the bridging force against crack opening displacement curves of the 1st (bottom) 
and 27th (top) fibers for SDμμ =  and SDμμ 05.1=  are plotted.  It is evident that all the fibers 
shake down (the 2nd fiber to the 26th fiber are in intermediate conditions with respect to the 
1st fiber and the 27th fiber) when SDμμ =  regardless of the characteristics of the load paths 
being considered.  On the other hand, for SDμμ 05.1= , alternating plasticity with energy 
dissipation in hysteretic loops at the fiber levels takes place in the case of box path but not in 
the case of 90° out-of-phase path.  This is a consequence of the fact that the optimization 
procedure in Eqs 13 and 14 ensures that, for any load path within the rectangular domain 
defined by SDμ  and a given maxmax / NM  ratio, the composite beam will shake down, but 
nothing is said about the shakedown condition for load paths outside the load domain.  In 
such cases shakedown conditions will depend on a finite number of MN −  couples along the 
load path which describe a convex domain enclosing the load path. 
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Figure 4. Bridging force vs crack opening displacement for: (a) box path and SDμμ = ; (b) box path and 

SDμμ 05.1= ;  (c) 90° out-of-phase path and SDμμ = ;  (d) 90° out-of-phase path and SDμμ 05.1= . 
 
 
6. Conclusions 
In this paper, a bridging crack model for a fiber-reinforced brittle-matrix composite beam 
under oscillatory axial load and bending moment is presented.  A simple rigid-perfectly 
plastic bridging law due to fibers is considered.  By drawing a parallel with the well known 
problem of shakedown in elastic-perfectly plastic monolithic bodies, it is shown that the 
classical Melan’s theorem of limit analysis can successfully be applied to the present model, 
where the crack opening displacements at the fiber levels play the role of the plastic strains in 
monolithic bodies.  For illustrative purposes, the results of the optimization procedure based 
on the Melan’s theorem are verified for a fiber-reinforced concrete beam by performing a 
step-by-step incremental procedure.  
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