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Abstract 
In this work Mode I fracture toughness behavior of Electron Beam cured unidirectional 
CFRP laminates is investigated by means of standardized Double Cantilever Beam (DCB) 
tests. A matrix system, comprising a DGEBA epoxy monomer and a typical initiator of 
cationic polymerization, was used and panel samples assembled by hand lay-up. Curing was 
achieved by 20 to 40 minutes irradiation on a pulsed 10 MeV Electron Beam accelerator. One 
batch of resin was also mixed with 10 phr of a PES thermoplastic monomer in order to 
enhance the matrix toughness. The influence of fibre-matrix adhesion, matrix toughening and 
matrix crosslinking density on the mode I delamination behavior have been investigated by 
correlating the results of DCB and Dynamic Mechanical Thermal Analysis (DMTA) tests. 

 
 

1 Introduction 
Exposure to ionizing radiation represents an alternative way to the conventional thermal 
curing processes to produce advanced fibre-reinforced polymer (FRP) composites [1]. Some 
attractive advantages of this out-of-autoclave process comprise the possibility to manufacture 
complex parts at relatively low temperatures and short times, save in equipment maintenance 
costs and enhance environmental sustainability (e.g. by a reduced use and exposure to 
hazardous additives and volatiles, and lower processing energy consumption).  
In the last two decades several studies have focused on the adaptation of suitable polymer 
chemistry to enable radiation induced cross-linking polymerisation [1-3]. Joined network 
research programmes have also demonstrated the possibility to adapt radiation facilities to 
manufacture industrial grade large and complex FRP composite parts [2-4], and r&d projects 
are in course within the aerospace sector trying to exploit all the know-how acquired so far 
[5,6]. A common aim and key aspect of most studies on radiation curing of bulk resin systems 
has been the optimisation of materials and process parameters in order to achieve adequate, 
controlled and reproducible all-round physical and mechanical performances. In this 
perspective several studies have been focused on the development of multifunctional nano 
and micro structured resin systems [7,8]. Two topics in particular have received attention: the 
achievement of high cross-linking density, and the enhancement of matrix fracture toughness, 
e.g. by opportune tuning of structural morphology through the addiction of nano and micro-
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phases [8]. While considering bulk matrices these studies have demonstrated the possibility to 
match or even improve performances of equivalent thermally cured systems, when it comes to 
consider fibre reinforced matrix systems a major weakness has been identified in the quality 
of fibre-matrix adhesion [9-11]. Indeed the low fibre-matrix adhesion strength is perceived by 
many researchers as a major key barrier limiting the more widespread adoption of radiation 
curing by the aerospace industry [11]. In fact some most important damage mechanisms 
leading to failure in FRP composites usually arise when off-axis structural response is 
solicited. In this situation the overall behaviour is dominated by both the matrix and the fibre-
matrix interfacial properties, with a predominant influence established by the weaker subject. 
Studies focusing on fibre-matrix adhesion quality in radiation cured FRP composites have 
usually limited mechanical characterisation analyses to the Short Beam Shear test (SBS) and, 
to a less extent, the Three Point Bending (TPB) of [90°]n beam samples [9-12]. Although both 
tests are known to exhibit good correlation between the fibre-matrix Inter-Facial Shear 
Strength (IFSS) and the composite strength properties (the Inter-Laminar Shear Strength, 
ILSS, for the SBS, and transverse flexural strength for the TPB) [13,14], one further reason 
for the popularity of these mechanical characterisation tests is their ease of implementation. It 
is well known that fibre-matrix adhesion performances can play an important role also on the 
interlaminar fracture behaviour [13,15], which is well modelled in brittle FRP composites by 
the toughness parameters of Linear Elastic Fracture Mechanics (LEFM) [16].   
The present study proposes the use of interlaminar fracture delamination as a main 
mechanical characterisation tool to evaluate unidirectional CFRP flat panels manufactured by 
means of a fast e-beam radiation curing technique. Mode I fracture toughness behaviour was 
investigated by means of Double Cantilever Beam (DCB) delamination tests, and Dynamic 
Mechanical Thermal Analysis (DMTA) on [0°] and [90°] beam samples were also performed 
to assess the curing degree of the resin matrix. The correlation of results from the proposed 
characterisations has shown new potentials for a more thorough investigation of 
structure/properties relationships in radiation cured composites.  
 
 
2. Material systems and samples preparation  
Two flat laminate plates with approximate dimension 20×25 cm2 have been manufactured 
with the purpose to cut and test DCB samples according to ASTM D 5528. The nomenclature 
used to identify samples will be pxy, with x identifying the panel number and y the sample cut 
from the px panel. The main difference between the two panels is the presence of 10phr of a 
toughening PES monomer on the matrix system used in panel p2.  
 
2.1 Selection of raw materials  
The epoxy monomer was 2,2-bis[4-(glycidyloxy)phenyl]propane (DGEBA) by Aldrich and 
the initiator was an iodonium salt, cumyltolyliodonium tetra(pentafluorophenil) borate (Rh 
2047), supplied by  Rhodia Silicones. The toughening agent was an OH terminated 
polyethersulfone engineering thermoplastic, SUMIKA EXCEL 5003P, Mw 25,000, produced 
by Sumitomo Chemicals (Japan). Proportions of constituents in the resin blends are reported 
in table 1. In the toughened resin batch (panel p2) 10 phr of PES monomer powder was fully 
dissolved in the resin by keeping this at 120 °C for one hour under mechanical stirring. The 
resulting blend was then cooled and maintained at 80 °C to keep viscosity sufficiently low for 
fibre impregnation.  
A dry fabric SikaWrap®-400C Mid Mod (Supplied by SIKA Italia) was used as 
reinforcement. This is a unidirectional carbon fibre crimped textile with fibre bundles hold 
together by waving weft nylon ties (se fig. 1a). The fabric had a nominal areal weight of 400 
g/m2 and employed high modulus carbon fibers (nominal Ef=390 MPa).        
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with PES has been confirmed in terms of enhanced critical delamination energies, both at 
initial and propagation stages. In general it has been found that the evaluation of the 
delamination behaviour with the traditional LEFM approach can be a valuable mechanical 
characterisation benchmark to investigate the role of matrix structural morphology and fibre-
matrix adhesion strength of radiation cured FRP composites.    
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