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Abstract 

The aim of this work is to contribute in improving fibrous preforms impregnation for Liquid 

Composite Molding (LCM) processes. The void prediction in LCM sparks off interest within 

the Composite Material elaboration because it represents a significant issue to keep the 

expected mechanical properties of the final product. The liquid properties, the preform 

geometry and the flow conditions impact the void or bubble entrapped inside and outside the 

yarns. Nevertheless, due to the complex geometry of the reinforcement, experimental 

characterization of bubble formation remains delicate. Thus, our study deals with two simple 

model networks representing connected pores so called “Pore Doublet Model”. A first is 

considering two capillaries converging on a node (T-junction) and a second is representing 

two capillaries interconnected with a supplying principle. In this paper, we emphasize on 

microfluidic and millifluidic approaches where wetting and capillary forces are significant 

during bubble formation mechanism. 

 

 

1 Introduction 

1.1 Bubble formation during Liquid Composite Molding processes 

The LCM processes refer to composite manufacturing techniques where a resin is injected 

through a fibrous preform with an imposed pressure or flow. During these processes, bubbles 

can be created and then entrapped. The origins of this phenomenon stem mainly from the 

complex geometry of the reinforcement and the adhesion properties at the liquid/fibre 

interface. The fibrous preform is often represented with mainly two pore scales: a macroscale 

between the bundles and a microscale within the bundles. Thus, the flows are governed 

differently according to the scale, either by the capillary pressure inside the tow or by the 

viscous force between the tows. Hence, the bubble formation can be explained by the 

competition between the capillary and the viscous effects which are compared by the capillary 

number Ca. Indeed, these both kinds of flow induce locally a difference between the front 

positions leading consequently to the bubble formation that can be summarized as follows: 

the intra-tow void, so-called microvoid, which is located inside the bundle and the inter-tow 

void, also called macrovoid, between two consecutive bundles (Figure 1). More precisely, the 

microvoids occur at high capillary number Ca when the viscous flow overcomes the capillary 

forces whereas the macrovoids are obtained at lower Ca where the capillary pressure 

overcomes the viscous pressure. 
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Figure 1. Microvoid and macrovoid entrapment inside a fibrous perform. 

 

To quantify the void and attempt to minimize its rate inside composite materials, many 

experimental studies have been carried out [1-4]. However, it is often difficult to visualize 

bubble formation and transport during the LCM process. Therefore, to determine the final 

saturation, numerical works [5], experimental and theoretical studies in porous Pore-Doublet 

Model [4, 6] are ways to get round this difficulty. The latter is a widely used modelling to 

understand the dynamic of immiscible fluids in porous media [7, 8]. 

 

1.2 Modelling bubble formation in connected pores 

First, the purpose of this paper is to underline the influence of the wetting situation when 

generating a confined bubble train using a technique based on interaction between two 

immiscible fluids (liquid-gas). Experiments were made using a cylindrical T-junction device, 

widely employed for the cross-flowing configuration, which can model two convergent pores 

from the fibrous preform. Secondly, we emphasise the supplying principle arising from the 

bulk provided by the macrochannel, which plays the role of a tank, to the microchannel [4, 6, 

16]. A theoretical model for a wetting situation will be presented by taking into account 

supplying principle within interconnected capillaries. 

 

1.3 Bubble formation by cross-flowing streams: Microfluidic approach 

In the last decade, the interest in the interactions between to immiscible fluids (liquid/liquid or 

liquid/gas) by converging a dispersed phase (break-up stream) and a continuous phase (shear 

stream) has risen significantly. Indeed, several microsystems were developed and many 

studies have been carried out and extended to multiphase flow, in order to improve the 

industrial microfluidic devices employing calibrated bubbles and droplets. In this respect, 

some of the main investigations have been reviewed lately [9] focusing on the physical 

mechanisms governing the bubble creation in various microfluidic devices. Furthermore, 

three fundamental techniques have been employed to form droplets and bubbles: i) the co-

flowing streams [10], ii) the cross-flowing streams [11] and iii) the microfluidic flow focusing 

devices [12]. As for flows with low Reynolds numbers, the use of microchannels in the 

above-named systems allows to consider the viscous and interfacial effects when describing 

the dynamic formation of calibrated bubbles and droplets. The bubble generating system we 

used in our study is a T-junction device which is widely employed for the cross-flowing 

streams mechanism. It consists in converging a continuous liquid stream and a dispersed gas 

phase perpendicularly (Figure 2). 

 

 
Figure 2. i) Composite material with an entrapped bubble and ii) its equivalent model sketch. 
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Two main regimes monitoring bubble formation can be distinguished according to the range 

of the capillary number values: the squeezing and the dripping regimes. The first is a confined 

breakup mechanism occurring at typically small capillary numbers (Ca < 10
-2

), meaning that 

the interfacial force overcomes the viscous shear stress [11]. The obtained bubbles, so called 

slug bubbles, are quite longer than the channel width. Two phases characterise the bubble 

growth [11]: the filling phase during which the dispersed phase penetrates into the continuous 

stream until the bubble becomes large enough to obstruct the main flow, and a squeezing 

phase during which the incoming liquid pushes the bubble downstream with a velocity close 

to the mean velocity of the liquid until the break-up. During the filling period, it was 

established that the bubble size doesn’t depend on the flow conditions but is influenced by the 

width of both channels [13]. It was also found that the bubble length scales linearly with the 

ratio of the flow rates of both the dispersed and the continuous phases during the squeezing 

period [11]. The second regime is an unconfined breakup mechanism occurring when Ca ≥ 2 

10
-2

 [14]. It takes place when the dispersed phase doesn’t clog the continuous phase and the 

bubble breakup is controlled by the local shear stress. In a recent work [15], we have found 

that the bubble size and velocity depends on the wetting behaviour between the injected liquid 

and the solid surface used. Indeed, for a non-wetting configuration, there was a discrepancy 

between the measured bubble length and the one expected by the models. Up to our 

knowledge, little attention has been paid to bubble formation involving partially wetting 

situations. We will focus on the bubble size in the squeezing regime only (for small Ca) in 

which the interfacial forces should be predominant. 

 

2 Materials and testing methods 

2.1 Wetting characterization 

We used silicone polydimethysiloxane oils (CH3)3Si – O – [(CH3)2SiO]n – Si(CH3)3 (PDMS 

Rhodorsil 47V100 from Rhodia), n-Hexadecane 99% CH3(CH2)14CH3, Ethylene glycol ≥ 

99.5% C2H6O2, distilled water H2O and Glycerol 98% C3H8O3. The liquid surface tensions γL 

and the apparent static contact angles θs on the glass tube were respectively determined by the 

Wilhelmy and the Jurin methods with a Krüss K100SF tensiometer. For each liquid, both γL 

and θs were measured five times and the mean values was selected. The liquid properties 

(liquid surface tension γL, density ρ and viscosity η) and the static contact angle 

measurements are given in Table 1. 

 

 γL ± 0.4 [mN.m
-1

]
 

Literature γL [mN.m
-1

] ρ [g.cm
-3

] η [mPa.s] θs ± 2 [°]
 

47V100 20.8 20.9 
(a)

 0.965 
(a)

 100.0 
(a)

 13 

Hexadecane 27.5 27.6 
(b)

 0.773 3.3 34 

Ethylene glycol 48.7 48.3 
(c)

 1.109 21.8 77 

Water 72.6 72.8 
(b)

 0.998 1.0 89 

Glycerol 98% 62.9 63.4 
(b),(c)

 1.263 1100.0 90 

Table 1. Liquid properties and wetting characterization at 20°C: 
(a)

 Rhodia Rhodorsil, 
(b)

 Ström (Krüss database) 

and 
(c)

 Fowkes (Krüss database) 

 

2.2 Bubble formation in T-junction device 

Experiments were performed in a cylindrical glass capillary tube with inner radius Rc = 1.0 

mm. Liquid and gas were injected with controlled volumetric flow rates thanks to syringe 

pumps: Q1 represents the continuous liquid flow rate in the main channel and Q2 is the flow 

rate of the gas discontinuous phase (Figure 3). 
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Figure 3. Simplified outline of the experimental device: i) side view; ii) top view. 

 

Note that the range of the ratio Q2/Q1 is between 10
-2

 and 3. The injected gas penetrates into 

the main channel until the opposite wall and was sheared by the liquid stream. The bubble 

was pinched, broken up and carried away by the cross flow. After the change in the flow rate 

values, we waited an adequate time before taking measurements to let the system relax to a 

steady state flow and a stable break-up mechanism. The experimental study was performed by 

controlling the main dimensionless numbers, which are given in Table 2. 

 
Dimensionless numbers Range 

Reynolds number
 

Re1 = 2ρU1Rc / η 1.4 10
-4

 ≤ Re1 ≤ 5.0 10
-1

 

Capillary number
 

Ca1 = ηU1 / γL 2.5 10
-7

 ≤ Ca1 ≤ 1.0 10
-2 

Bound number
 

Bo = ρgRc
2
 / γL 1.3 10

-1
 ≤ Bo ≤ 4.5 10

-1 

Froude number
 

Fr1 = U1
2
 / 2gRc 1.6 10

-8
 ≤ Fr1 ≤ 1.4 10

-3 

Table 2. Dimensionless number ranges of the continuous phase. 

 

The bubble formations were filmed and images were extracted and then analyzed by detecting 

the liquid front position and the bubble tip with an accuracy of about 40 µm. Before the 

experiment, the glass T-junction device was immersed for one day in a drenching of solution 

made with 98% of distilled water and 2% of Decon 90. Then, the capillary was flushed with 

distilled water and air and baked in the oven at 105°C for about two hours. 

 

3 Results and discussion 

3.1 Bubble length in the squeezing regime 

Figure 4 shows the normalized bubble length as a function of the flow rate ratio Q2/Q1. 

 

 
Figure 4. Normalized bubble length as a function of flow rate ratio. 



ECCM15 - 15
TH

 EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

5 

 

The experimental trends give a linearly growth of the bubble length with Q2/Q1 that can be 

expressed as: 

 

     B
Q

Q
A

R

L

c


1

2

2
     (1) 

 

Here A and B are the fitted coefficients and are reported in Table 3. 

 
 A

 
B

 
Q2/Q1 = 2 

Silicone oil 47V100 1.06 ± 0.05 1.03 ± 0.10 
 

Hexadecane 1.83 ± 0.20 1.56 ± 0.20 
 

Ethylene glycol 2.52 ± 0.20 2.02 ± 0.20 
 

Glycerol 98% 2.52 ± 0.20 2.52 ± 0.20 
 

Water 2.97 ± 0.20 3.22 ± 0.20 
 

Table 3. Fitting coefficients for bubble length model. 

 

The different values of A and B can be explained by depicting the pressures acting on the 

bubble during its formation: namely, the driving pressure exerted by the shear stream force, 

the surface tension force and the viscous dissipations arising from the viscous resistance in the 

core of the liquid, the dissipation within the precursor film and the friction in the contact line. 

For the silicone oil, the results shown in Figure 4 and Table 3 indicate that the experimental 

coefficients A and B are close to those predicted by Garstecki et al. model’s (A ≈ B ≈ 1) [11]. 

In this case, the measured apparent static contact angle θs is about 13°± 2°. The low value of 

the contact angle means that bubble formation occur in a quasi complete wetting 

configuration which is close to the above named studies [11, 13]. 

For the other liquids, the apparent contact angle θs is between 34° and 90° meaning that they 

are partially wetting liquids. The bubble length evolution remains linear but with experimental 

coefficients A and B higher than those acquired for the completely wetting case. For instance, 

the obtained coefficients for the Hexadecane are about 1.6 times higher than those for the 

silicone oil. For relatively higher apparent contact angles (77° ≤ θs ≤ 90°), the bubble lengths 

are about twice to three-fold larger than those for the wetting liquids. In the partial wetting 

case, we observe that the system bubble-liquid slug is less dissipative than in the wetting case. 

Indeed, the surface tension forces are weaker due to the increase of θs and the dissipation in 

the precursor film is not a prevalent feature. Thus, one should to take into account the 

dissipation due to the viscous flow and due to the frictional processes near the contact line. 

The latter is unstable due to the molecular interactions at the solid-liquid interface. This 

qualitative description can explain why the bubbles are larger than in the wetting case. 

Thereby, when the spreading energy is low (high contact angle), the contact line is more 

mobile and we can expect to have larger bubble lengths. Moreover, the uncertainties about the 

bubble size measured in the partial wetting situation are higher than for wetting liquids 

because the position of the contact line is not known in advance, this is free-boundary 

complex problem. 

 

3.2 Interconnected capillaries: theoretical approach 

The pore doublet model studied in this part is composed of two circular capillaries with 

different radii: RM, for the larger capillary, called “macrochannel” and Rm for the smaller one, 

named “microchannel”. The PDM capillaries are divided into two parts over the length: a first 
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part where the capillaries are continuously interconnected on over a distance l, so-called 

“continuous interconnectivity”, subsequently followed by a second part of length L, wherein 

the capillaries are interconnected at both ends forming nodes, so-named “node 

interconnectivity” (Figure 5). Note that the void entrapped in the macrochannel and in the 

microchannel will be respectively called macrovoid and microvoid. The filling of the PDM 

can be divided into two phases according to the position x(t) of the both menisci into the two 

parts. The first phase, which is defined for the time range [0,tfl], occurs when one of the both 

menisci reaches first the end of the first part (x(tfl) = l). The second phase, defined for tfl≤ t ≤ 

tfL, is when one of the both streams completely fills the second part (x(tfL) = l+L). In order to 

simplify the following analytical development, the void is assumed to be incompressible and 

the liquid as Newtonian. Furthermore, we will consider that the advanced contact angle at the 

intersection between the liquid-gas interface and the solid surface is supposed to be 

approximately equal to the apparent equilibrium contact angle. To lighten the notations, we 

will use the subscripts m and M, respectively for the microchannel and the macrochannel and 

the continuous interconnectivity and the node interconnectivity parts are noted with 

respectively the exponents ci and ni. The governing flow equations describing the forces 

filling of the PDM is given below. 

 

 
Figure 5. Sketch of void formation inside a PDM formed by a continuous interconnectivity and a node 

interconnectivity parts: a) Supplying principle, b) macrovoid and c) microvoid creation. 

 

We consider the supplying principle [16] that consists in supplying mass to the microchannel 

from the macrochannel which plays the role of a tank. Consequently, the meniscus inside the 

microchannel is always ahead.The difference between the both menisci ∆x
ci
(t), balancing the 

viscous pressure drop with the capillary pressure between the both menisci, reads: 

 

    
  21

21

3

22

2

cos
)( t

R

RRR
tx

M

mmMsL













 





   (2) 

 

For the first part of the macrochannel and for the second part of the both capillaries, the 

motion equation is deduced from balancing the pressures, with the addition of an injection 

pressure Pi to the Lucas-Washburn equation [17, 18]: 

 

     
Mm

sL
i

Mm
R

Pxx
R ,

2
,

cos28 




    (3) 

Besides, we define a pressure P*, for which the both menisci arrive at the same time tfl at the 

node x = l, expressed as P* = (2γLcosθs/RM) [α(2+α-α2
)/(1+α)], where α Є [0;1]representing 

the ratio of capillary radii Rm/RM. In the following, we set β the part length ratio L/l. 
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For Pi < P*, we assume that the meniscus in the small capillary reaches first the first node. 

Two possibilities can occur: i) the meniscus inside the macrochannel reaches first the second 

node, creating therefore the microvoid (Eq. 4); or ii) the stream inside the microchannel 

remains in advance and reaches first the second node, hence the macrovoid is created (Eq. 5). 
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For Pi > P*, we suppose that the flow inside the macrochannel reaches first the first node. We 

have only one possibility can be obtained and the entrapped microvoid reads: 

 

  






























l

tx

RP

RP
ltx

fl
ci
m

sLmi

sLmi
fL

ni
m

)(

cos2

cos2
1)(

21




    (6) 

 

Curves plotted in Figure 6.a) are given for α = 0.1 and by varying the parameter β. For each 

value of β and for Pi < P*, the macrovoid rate decreases with the increase of the pressure Pi 

because the stream inside the macrochannel is flowing increasingly quickly. Besides, for a 

given Pi, the macrovoid rate grows with the decrease of β. Curves presented in Figure 6.b) are 

obtained for β = 2 10
-3

 and different values of α. 

 

 
Figure 6. Void rate evolution as a function of the imposed pressure Pi for l = 500mm and Rm = 10μm: a) 

Different values of β with α = 0.1 and b) different values of α with β = 0.002. 

 

4 Conclusion 

We have proposed issues to quantify the void created and entrapped during LCM processes. 

The experimental results obtained in the T-junction device show the influence of wetting 

behaviour on bubble size. For instance, the chemical characterization of the polyester, 

vinylester and epoxy resins, that are partially wetting liquids, is a significant way to enhance 

LCM processes by improving the knowledge of the adhesion fibre/resin. Furthermore, we 

have proposed an analytic approach of void prediction based on both the Lucas-Washburn 

equation and the supplying principle for the imbibition case through an original PDM 

combining continuous and node interconnectivities. 
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