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An analysis of viscoelastic bending of sandwich beam, consisting of elastic bearing layers 

and viscoelastic core, based on Volterra integral equations with exponential kernels and 

Volterra resolvent operators. The space and time operations are separated and Fourier se-

ries are applied. Theory is verified by experimental data from three- point bending. 

 

 

1 Introduction  
Polymer foam-core sandwich panels are increasingly being considered for load-bearing 

components in buildings. Sandwich panels are offering a high stiffness per unit weight and 

excellent thermal insulation and may be easily mass-produced [1]. But such sandwiches from 

polymers creep at room temperature, what is limiting their use in structural applications. In 

this paper we model the creep of sandwich beams with linear viscoelastic polymer foam 

cores. A previous study indicated that the creep of a polymer foam can be described knowing 

the creep response of the solid from which it is made and the relative density of the foam 

[2],[3]. In this study, we combine the viscoelastic model for foam creep with the standard 

analysis of deflection of a sandwich beam to develop an expression for the creep of a 

sandwich beam with a polymer foam core. The results are compared with data from a series of 

tests on sandwich beams with polymer based composite and rigid foam core.  

 

2 Formulation and solution of the problem 

Paper deals with integral equations Volterra and kernels mostly of exponential type. 

Further, for simplicity, a symmetrical structure of the simply supported beam is considered. 

The load q(x,t)  is acting in direction of beam thickness z according to relation 

     txgtxq ,  where  (t) is Heaviside function. 

Below, for the simplicity, the symmetric structure of the simply supported beam is 

considered.  

 Let us treat by beam core, where the shear stress  is of main importance and define  

 tx,1   ,      xz ztx ,, 12  
  
where 02   can be considered. The relations satisfy 

the equilibrium condition in z direction z.  Further 
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On this basis the similar relations for bearing layers are derived. Here we will define the 

integral operators S,  S
-1

 for a model with structural equation  KEE / .  

Decisive component of stress in bearing layer is  x  . Relation  xx SE    is valid   and 

after some arrangement  
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 More advantageous formulation we can get on basis of generalized function  tx, , 

where we consider  
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Now one basic equation is satisfied identically and the second is transformed into form 

 qL   , where operator L is expressed by relation  
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 Boundary conditions for simple support are given by relations  
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 At solving the problem for load       txgtxq ,   we will apply Fourier 

expansion of functions g  tx,   a    tx, .  
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 As illustration we give expression for vertical displacement for the middle of the beam 
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After substitution we obtain the relation 
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  For concentrated load we can introduce a generalized function  tx, instead of 

functions  tx,1 ,  txw , by substitution 10, 2  sxxx   and further 
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By applying the boundary conditions 0   we receive for the middle of the beam 
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 is of the form  
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1 . Parameters  ,    are changed according to 

adopted mechanical model. For the Poynting-Thomsonův model (linear solid) and 

arrangement  2K/GG xc    it will be valid 
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2 Experimental evaluating of creep for the core 
 

 For mechanical testing has been delivered a sandwich plate with bearing layers from 

composite, reinforced by glass fibres and polyester matrix. Cube testing sample was loaded 

by constant load in a set-up developed and manufactured in Klokner Institute. Transversal 

displacements were measured by LVDTs and strain gauges. Testing samples were loaded and 

unloaded at least 100 h. The course of strain for 24h loading and 24 h unloading is shown on 

Fig.1. 
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Figure 1 Strain vs time in compression of sandwich core  

 

Theoretical course of strain vs time according to Poynting- Thomson model has relationship
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and strain is depending on three material parameters E, which can be evaluated by collocation 

method. For the material in Fig.1 the following values have been found: 

E1=24.615 N/m2, E2=45.714 N/m2, K=1961.0 N/m2.hr 

 

3 Experimental evaluating of vertical deflection at tree-point bending 
 

Testing samples were put into a set-up for three point testing and loaded by a constant load 

300, 600 and 800 N. Distance between supports was 200 mm, length of sample 300 mm, 

width 50 mm. Vertical deflection has been measured by LVDT sensors and data acquisition 

system National Instruments NI 1052 in program environment LabWindows. Measured 

values have been evaluated by MS Excel and compared with theoretical values. The 

comparison of results shows good agreement (< 10%). Results of long-term testing of 

sandwich beam are shown in Fig.2. 

 

vertical 

deflection [mm] 

  
 

                                                       time [s] 

 

Figure 2. Results of long-term loading of sandwich beams  
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4 Conclusion 

A theory of viscoelastic bending for sandwich beams subjected to arbitrary loading has been 

given.  Sandwich beam has symmetrical structure with elastic bearing layers and viscoelastic 

core. Theory is based on Volterra integral equations with exponential kernels and Volterra 

resolvent operators. The space and time operations are separated and Fourier series are 

applied. Theory is verified by experimental data from three- point bending. 
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