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Abstract
Crack initiation at the fibre-matrix interface under transverse loading is studied by applying
a coupled stress and energy criterion in the framework of the Finite Fracture Mechanics. This
criterion assumes that a debond onset of a finite length occurs when a stress condition is fulfilled
along the assumed path of the new crack and the crack onset is energetically allowed. The effect
of the load biaxiality on this crack initiation is studied, showing only a moderate influence of
the secondary load with respect to a primary tension load. This effect appears to be larger for
brittle than for tough fibre-matrix configurations .

1. Introduction

In spite of the responsibility of fibre-reinforced composite materials in industrial structures,
failure in these materials is not sufficiently understood yet. In particular, matrix failure, associ-
ated to predominant load perpendicular to the fibre-axis (called transverse load), shows a high
complexity. The stages of this failure mechanism are well-known [1]: first, microdebonds ap-
pear at the fibre-matrix interface (or very close to it) which propagate subsequently along this
interface. Eventually these microdebonds kink out the interface to the matrix coalescing with
other microcracks which can produce the failure of the ply. The present work focuses on the
first step: the crack initiation at the fibre-matrix interface. The problem of a debond along the
fibre-matrix interface under a remote transverse loads (σ∞x , σ

∞
y ) has been largely studied during

decades. However, the debond initiation was not intensively studied until recently when com-
putational methods as Cohesive Zone Model [2, 3] or Linear Elastic Brittle Interface Model [4]
were used. Additionally, a theoretical model was developed in [5] to predict a debond onset
of a finite length at the fibre-matrix interface under uniaxial transverse load σ∞x by applying
the coupled criterion [6] of the Finite Fracture Mechanics (FFM). This criterion assumes that
a crack onset of a finite length occurs when tractions along the assumed crack path exceed a
critical value (stress criterion) and the crack onset is energetically allowed (energy criterion).

1



ECCM15-15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012

Bimaterial E1(GPa) ν1 E2(GPa) ν2 α β ε E∗ (GPa) k m
glass/epoxy 70.8 0.22 2.79 0.33 0.919 0.229 -0.074 6.01 1.44 1.56

Table 1. Isotropic bimaterial constants for the glass/epoxy studied (1, fibre; 2, matrix)

The influence of a secondary transverse load σ∞y , perpendicular to the primary one σ∞x , see
Figure 1, has been remarked in [7]. In spite of this, this influence is not taken into account by
the majority of failure criteria found in the literature for these materials. The aim of this work is
generalize the theoretical model developed in [5] to take into account the secondary transverse
load in order to quantify the influence of this secondary transverse load on the critical value of
the primary remote load leading to the debond onset. The initial problem, before the debond
onset, is modelled as a single fibre perfectly bonded to an infinite matrix considering both
materials as linear elastic isotropic at the plane perpendicular to the fibre-axis, see Figure 1(a).
In this work, a glass/epoxy is studied as example, see Table 1. A presupposed debond after its
onset is represented in Figure 1(b). Note that, it is symmetric with respect to the x-axis (primary
load direction). As a consequence, only its upper half part is studied, therefore, angles at the
interface are defined as θ,∆θ ≥ 0. On the contrary the presupposed debond is not symmetric
with respect to the y-axis in accordance with the analysis carried out in [8].

First, both stress and energy criteria are applied to this problem in Sections 2 and 3, respectively.
Then, conditions imposed by both criteria are combined in order to obtain the minimum remote
load which fulfills both criteria in Section 4, where main results are discussed as well.
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Figure 1. Schema of the problem (a) before and (b) after the debond onset.

2. Stress criterion

Stress criterion used here imposes that a debond onset is possible if normal tractions σ along
the entire presupposed debond path before the onset exceed a critical value σc. In the present
case the presupposed debond path is the interface, so σ and σc > 0 are, respectively, the normal
tractions along the fibre-matrix interface and the tensile strength of this interface. This condition
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Figure 2. (a) Dimensionless normal and tangential tractions along the fibre-matrix interface as functions of the
angle θ for glass/epoxy. (b) Plot of the stress criterion for the debond semiangle ∆θ and the critical remote load
σ∞cx for glass/epoxy.

is expressed as,
σ(θ) > σc, for 0 ≤ θ ≤ ∆θ, (1)

where θ is the polar angle of each point at the interface and ∆θ is the debond semiangle after
the onset, see Figure 1.

Normal tractions along the fibre-matrix interface before the debond onset can be calculated
from Goodier’s solution [9] as a function of the primary and secondary loads, σ∞x and σ∞y , the
bimaterial properties and the polar angle θ of an interface point,

σ(θ)
σ∞x

= k + (k − m)η − (1 − η)m sin2(θ), (2)

where η, named biaxiality parameter in the following, is the ratio of the secondary to primary
remote loads,

η =
σ∞y

σ∞x
, (3)

and k y m are bimaterial elastic constants defined in [5] as a function of the Dundurs parameters,

k(α, β) =
1
2

1 + α

1 + β

2 + α − β

1 + α − 2β
, (4a)

m(α, β) =
1 + α

1 + β
. (4b)

Figure 2(a) shows the normal tractions along the fibre-matrix interface given by Goodier’s so-
lution as a function of θ and the biaxiality parameter η. In the following, it will be assumed
that σ∞x > 0 and σ∞y ≤ σ

∞
x , this implies η ≤ 1. It is interesting to remark that normal tractions

around the point θ = 0◦ increase when a secondary remote compression σy < 0 is applied.
However for points far from θ = 0◦, the effect of a secondary remote compression is reversed
and normal tractions therein decrease with a secondary compression. For some values of η, a
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point θ0 exists at the interface where normal tractions vanish and for points θ > θ0 compressions
at the interface are observed, therefore, according to (1), ∆θ ≤ θ0.

Then, taking into account that σ is decreasing for 0◦ ≤ θ ≤ 90◦ as demonstrated in [10] and
introducing the analytic solution for normal tractions (2) in the definition of the stress criterion
in (1), the final expression of this criterion writes as

σ∞x
σc

>
1

k + (k − m)η − (1 − η)m sin2 ∆θ
. (5)

This condition is plotted in Figure 2(b), where it is seen that this criterion defines a minimum
remote load σ∞x originating the debond onset as a function of the debond semiangle ∆θ and
the biaxiality parameter η. This figure shows that for small debond semiangles ∆θ a remote
compression makes easier the debond onset, whereas for the large ∆θ its effect is opposite. A
deeper analysis of the implications of this criterion in this problem can be found in [10].

3. Energy criterion

Η = -2 Η = -1

Η = 0

Η = 1

0 20 40 60 80
0

2

4

6

8

10

Θd HºL

G
`

(a)

Η = -2

Η = -1

Η = 0

Η = 1

0 20 40 60 80
0

5

10

15

20

Θd HºL

G
`

c

(b)

Figure 3. (a) Dimensionless Energy Release Rate Ĝ (ERR) and (b) dimensionless interface fracture toughness Ĝc

as functions of the debond semiangle θd for glass/epoxy and several values of the biaxiality parameter η.

Energy criterion is based on applying the first law of thermodynamics to the energetic balance
between the state before, Figure 1(a), and after, Figure 1(b), the debond onset,

∆Π + ∆Ek + ∆Γ = 0, (6)

where ∆Π and ∆Ek are, respectively, the changes of the potential elastic and kinetic energy
stored in the body and ∆Γ is the energy dissipated associated to the irreversible processes during
the debond onset. The change in the potential elastic energy can be related to the Energy Release
Rate (ERR) G by means of the classical relation G = − dΠ

d(2aθd) where θd is an “instantaneous”
debond semiangle. Assuming quasistatic initial state: ∆Ek ≥ 0. The energy dissipated ∆Γ can
be estimated by integrating the interface fracture toughness Gc. Hence, the energy balance in
(6) leads to ∫ ∆θ

0
G(θd, η)dθd >

∫ ∆θ

0
Gc(ψ(θd, η))dθd. (7)
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ERR G is given from Toya’s analytic solution [10, 11], assuming the open model of interface
cracks, in the form

G(θd;σ∞x , η; a; E∗, α, β) =

(
σ∞x

)2 a
E∗

Ĝ(θd; η;α, β), (8)

where E∗ = 2/
(

1−ν2
1

E1
+

1−ν2
2

E2

)
. Plots of dimensionless ERR Ĝ as a function of the “instantaneous”

debond semiangle for glass/epoxy and several values of η are shown in Figure 3(a). Note that,
in general, Ĝ increases when the secondary remote load σ∞y decreases. Gc can be approximated
by the phenomenological law of Hutchinson and Suo [12]

Gc(ψ,G1c, λ) = G1cĜc(ψ, λ) = G1c

(
1 + tan2 [

(1 − λ)ψ
])
, (9)

where ψ is the stress-based fracture mode mixity at the crack tip1 extracted from Toya’s analytic
solution for stresses [10, 11] for an “instantaneous” debond semiangle θd which would corre-
spond to a slow growing of the debond initiated at θ = 0◦. ψ can be defined in an alternative
manner avoiding the assumption of a presupposed debond growing sequence [14]. λ is a mode
sensitivity parameter and G1c is the interface fracture toughness in pure mode I.

By introducing the expressions of G and Gc into (7), the final expression of the energy criterion
is achieved after a and rearrangement,

σ∞x
σc

> γ
√

g (∆θ, η), (10)

where

g(∆θ, η;α, β, λ, θl) =

∫ ∆θ

0
Ĝc(ψ(θd, η))dθd∫ ∆θ

0
Ĝ(θd, η)dθd

> 0.

Note that g can be interpreted as a ratio between a dimensionless dissipated to a released energy.
γ is a structural dimensionless parameter introduced in [5]–a measure of the brittleness-ductility
of the interface,

γ =
1
σc

√
GcE∗

a
. (11)

The energy criterion, as can be observed in Figure 4 imposes a minimum value for ∆θ for a
given remote load σ∞x , σ∞y up to θE

min, where the function g has a minimum [5, 10].

4. Coupled criterion and results

Leguillon’s hypothesis [6] assumes that whereas each of the above studied criteria gives a nec-
essary condition for the debond onset, the combination of both criteria leads to a sufficient
condition. According to this idea, for a fixed value of the biaxiality parameter η, the debond

1It can be demonstrated, see e.g. [13], that in the open model of interface cracks it is not possible to define
a value of ψ strictly for the crack tip. As a consequence, in the present work, ψ is actually evaluated at a small
distance ahead of the crack tip θl = 0.1◦ following [5]
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Figure 4. Example of coupling both stress and energy criteria for η = 0 and glass/epoxy for two values of γ
corresponding to two different scenarios.

onset is predicted for the minimum value of σ∞x , denoted σ∞cx in the following, which fulfills
both criteria simultaneously.

As have been demonstrated in [5, 10], two different scenarios depending on γ value are found:

• Scenario A: Curves given by both criteria have an intersection point in the decreasing
part of the energy criterion. In this case the minimum value of σ∞x and ∆θ for which both
criteria are fulfilled is determined by this intersection point, see Figure 4.

• Scenario B: Both curves have no common point or this point corresponds to a debond
semiangle ∆θ > θE

min. In this scenario, see Figure 4, the minimum load is given by the

energy criterion as σ∞cx
σc

= γ
√

g(θE
min(η)) and ∆θ = θE

min.

In view of this analysis, a simple algorithm is necessary to determine the critical primary remote
load σ∞cx for different values of η and γ as detailed in [10].

From this model, several additional results can easily be extracted as, for example, variations of
the debond semiangle ∆θ at the debond onset as a function of the different problem parameters
and a size effect prediction. Also an indirect experimental procedure for measurement of the
fracture and strength properties of the interface can be proposed. All this is excluded from the
present paper for the sake of brevity, see [10] for details.

We focus here on the influence of the secondary transverse load on σ∞cx because this is essential
for three-dimensional failure criteria of unidirectional composites. Using the algorithm pre-
sented in [10], a map of critical biaxial transverse load is plotted in Figure 5 for glass/epoxy
and several values of γ. This map shows that, in general if a remote secondary transverse com-
pression σ∞y is applied the value of σ∞cx decreases which could lead to a premature failure if
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the secondary compression is neglected. This effect is relevant for small values of γ which
correspond to brittle configurations. For small values of γ, this effect depends strongly on the
bimaterial elastic constants k and m, see [10] for a detailed analysis. The effect of the secondary
transverse load agrees with the preliminary experimental evidences presented in [7, 15] for a
material with similar values for k and m.
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Figure 5. Biaxial critical loads σ∞cx and σ∞cy for glass/epoxy and several values of γ.

5. Concluding remarks

A theoretical model for the debond initiation at the fibre-matrix interface under a biaxial remote
load perpendicular to the fibre-axis has been developed by generalizing the model presented in
[5] applying the coupled criterion of the Finite Fracture Mechanics.

The influence of the secondary remote transverse load on the critical primary transverse load
leading to the debond onset has been studied and quantified. The analysis carried out has shown
a moderate influence on the critical primary load predicted for brittle configurations. In particu-
lar this difference is important when the secondary load is compressive, as found experimentally
in [7, 15], because of a premature failure predicted when this effect is neglected. For the sake
of brevity, only results which quantify the influence of the biaxiality have been presented, but
this model allows studying easily the influence of any parameter on the debond onset as shown
in [10].
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