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Abstract 
This paper presents different strategies for handling very many local strength criteria in 
structural optimization of laminated composites. Global strength measures using 
Kreisselmeier-Steinhauser or p-norm functions are introduced for patch-wise 
parameterizations, and the efficiency of the approach is illustrated for multi-material 
topology optimization of laminated composite structures including failure criteria.  

 
 

1 Introduction 
The objective of this work is to investigate different strategies for design optimization of 
laminated composite structures where very many local strength criteria are taken into account 
together with other global structural performance measures. The use of gradient based 
structural optimization techniques makes it is possible to tailor the laminated composite 
structure such that the desired structural performance is obtained. Typical criteria functions 
for the design optimization can be global measures such as mass, stiffness, cost, 
eigenfrequencies, and buckling load factors, and local measures such as point-wise strength 
criteria. Gradient based structural optimization techniques of finite element discretized models 
are well established for such problems, but the inclusion of local strength criteria introduces 
some challenges for large scale engineering design problems such as structural optimization 
of wind turbine blades. The failure indices of the laminated composite structure are normally 
determined using refined finite element models, and this introduces a very large number of 
local strength criteria that must be handled efficiently in the design optimization approach. 
 
One way of obtaining an efficient way of handling very many strength measures for design 
optimization of laminated composite structures is by introducing global strength measures 
such as Kreisselmeier-Steinhauser (KS) functions [1] or p-norm functions. In this paper the 
methods will in particular be applied for including failure criteria in multi-material topology 
optimization of laminated composite structures, where the amount of design variables is very 
large [2, 3, 4, 5], but the approach can as well be applied when the design variables 
considered are fiber angles and thicknesses of monolithic laminates. A simple benchmark 
example is studied for different discretizations in order to test the algorithms developed, and 
the use of the approach is also illustrated for multi-criteria design of a generic main spar from 
a wind turbine blade. Focus is on design problems where the maximum failure index is 
minimized while global constraints such as compliance and mass constraints are taken into 
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account, but the approach might as well be applied for design problems where strength criteria 
are specified as constraints of the optimization problem. 
 
2 Design optimization using strength criteria 
The design optimization approach taken in this work is based on the ideas introduced by 
Schmit in 1960 [6] of minimizing cost by means of Mathematical Programming techniques. 
The optimization problem can be written as: 
 

                                                                                  

 (1)
 

where  is the objective function,  the constraint functions with upper bounds  
, and  are the design variables with lower and upper bounds  

and , respectively. 
 
Structural optimization of laminated fiber composites using gradient based techniques has 
been applied for decades with the earliest works in the seventies by [7]. In this work focus is 
on optimization problems where the maximum failure index in the structure is minimized, and 
the failure indices are typically evaluated at the bottom and top of all layers in all finite 
elements used for the discretized model. Thus, the optimization problem is a min-max 
problem where the objective function  is given as a max over a set of functions :   
 

                                                                                                            
(2)

 
 
When the objective function  contains more than one function value, i.e. , the non-
differentiable min-max optimization problem can be reformulated into a differentiable 
problem using the so-called bound formulation [8, 9, 10], where an additional scalar design 
variable  is introduced: 
 

                                                                             

(3)

 

This is a simple, robust and very efficient method for multi-criteria optimization where the 
min-max problem is transformed into the problem of minimizing a bound  subject to the 
constraints , where each of the functions  are assumed to be 
differentiable. 
 
The bound formulation (and similar approaches) has been used for many years in structural 
optimization with great success for such min-max problems, but the resulting optimization 
problem may become very large for laminate design problems due to the many design 
variables  and many highly nonlinear local strength criteria  for engineering design 
problems such as wind turbine blades. Active set strategies may be used for reducing the 
number  of failure indices  to include, but it is important to include all relevant failure 
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indices in order to obtain a stable convergence of the problem. For example, values exceeding 
70% of the maximum value in a given design iteration can be included in the optimization 
problem that typically is solved using Sequential Linear Programming (SLP), Sequential 
Quadratic Programming (SQP), etc., see for example [11,12].  
 
3 Global strength measures for structural optimization 
One way of making the optimization problem less computationally challenging is by 
introducing global strength measures. Initial work on stress based single-material topology 
optimization was based on the transformation of stresses into one global stress measure for 
the structure, see [13, 14], but it is difficult to find a general and robust function suitable for 
all cases of stress reduction. Recently it has been demonstrated for single-material topology 
optimization problems with stress constraints that it is advantageous to introduce a number of 
global stress measures instead of having only one global measure. This is because the 
efficiency decreases when a large number of values are lumped into a single global value 
[15]. [16] grouped the finite elements into blocks and used a so-called block aggregation 
approach by computing a global stress measure for each of the blocks. In [17] a so-called 
regional stress measure approach was used and different strategies for grouping the stresses 
before computing the global stress measures were studied. 
 
For laminate design problems a patch parameterization is normally used, such that larger 
patches of elements are associated with the same parameterization. This can be reused for the 
computation of global strength measures by evaluating a global strength measure for each 
patch in the model, and this is the approach taken in this work. Failure indices (FI) are 
computed at the bottom and top of each layer of each finite element, and the number of FI 
values, , to include for each patch j may be defined by the user. Global strength measures 
are obtained using modified Kreisselmeier-Steinhauser (KS) functions [1, 18] or p-norm 
functions, see the discussion on these strength measures in [19]. For each patch 

, a KS function  can be computed as: 
 

                                     

 (4)

 
 
where , the scalar  typically is between 2 and 200 (20 is used for the examples in 
this paper), and  is the largest FI value among  in patch j. In 
general the latter KS definition has numerical advantages and is the one used in this work. 
However, the FI values typically are in the order of 1 and thus both KS functions perform 
well. The parameter  determines the difference between the original function and its 
approximation. The maximum value  of the values , is weighted 
more heavily when a high value of  is used, but this also causes oscillation or even 
divergence of the optimization problem due to ill-conditioning.  
 
Similarly, a p-norm function  can be computed for patch j as: 
 

                                                                                                              

 (5)
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The parameter p controls the level of smoothness, and the p-norm approaches the original 
max function as . However, a high value of p causes numerical problems, and in this 
work a value of 6 is used for p. 
 
Thus, the optimization problem in Eq. (1) is reduced to the following mathematical 
programming problem: 
 

                                                                            

(6)

 

where the global strength functions , are computed as  or . 
 
4 Design parameterization 
The so-called Discrete Material Optimization (DMO) approach [2, 3, 4, 5] has been applied 
for parameterization of the examples considered in this work. This parameterization approach 
makes it possible to solve the combinatorial problem of proper choice of material and fiber 
orientation for multi-material topology optimization of laminated composites, and the DMO 
approach relaxes the discrete material selection problem to a continuous formulation using 
interpolation schemes with penalization. Thus, the material properties are computed as 
weighted sums of properties of candidate materials, which may be different kinds of fiber 
reinforced materials associated with given fiber angles, possibly together with core materials 
if sandwich structures are allowed for the design. In this paper the “generalized SIMP” 
interpolation scheme presented in [5] for compliance problems is used. Here the material 
property of interest, for example the constitutive matrix , is computed in the following 
way, when there are  candidate materials to choose between, each characterized by its 
constitutive matrix : 
 

                                                          

 (7)

 
 

Thus, design variables  are directly associated with candidate material i, and the penalization 
power q is used to enforce a unique choice of material at the end of the optimization. The 
design variables can be considered as volume fractions  of each of the candidate materials 
with this parameterization. A large number of sparse linear constraints ( ) to enforce 
the selection of at most one material in each design domain is introduced, but these 
constraints are handled effectively using the SNOPT optimization package [20] using either 
SLP or SQP. 

The failure criteria used for fiber reinforced polymer (FRP) materials are normally defined in 
the material coordinate system 1-2-3, and the procedure applied for computing effective 
failure indices ( ) with the above DMO parameterization is the following: 
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1) Assemble the element stiffness matrices using  

2) Solve the linear elastic static problem ( ) for displacements   

3) Failure analysis postprocessing:  

a) For each element (ElemNo) extract the element displacement vector  from : 

i) For each layer (LayerNo): 

(1) Compute strain vector  in structural coordinate system 

(2) For each candidate material i: 

- Transform  to material coordinate system 1-2-3 of the candidate material 

 and evaluate failure index  

(3) Compute   

A SIMP-type interpolation is also used for computing the failure index , but here the 
power r is  in order to make it unfavorable to have intermediate volume fractions . The 
maximum strain criterion is used for the examples in this paper, but many other failure criteria 
used for laminated composites have also been implemented and can be applied. 

 

4 Examples 
4.1 Single-layered clamped plate subjected to uniform pressure 
The first numerical example considered is a clamped single-layered monolithic plate 
subjected to uniform pressure. The plate is divided into 8x8 patches with the same fiber angle 
within each patch, and the problem has been solved for a number of different discretizations. 
The four candidate materials to choose between are glass/epoxy material (GFRP) oriented at 
00, -450, 450, and 900. Material parameters for all examples are taken from the software 
program ESACOMP ver. 4.1. The minimum compliance problem using 24 x 24 9-node shell 
elements divided into 8 x 8 patches yields the design shown in Fig. 1. 

 

      Figure 1. Stiffness optimal design of single-layered plate divided into 8x8 patches. The fiber angle of the 
chosen candidate material is shown for each finite element in the 24 x 24 mesh used. 
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The plate example has been solved for a number of different discretizations with the objective 
of minimizing the maximum failure index in the structure, and Fig. 2 shows the result 
obtained when minimizing the failure index (computed by the maximum strain criteria) for a 
96x96 mesh, again with 8x8 patches for the parameterization. For each patch the 20 highest FI 
values have been extracted and converted to a global strength measure by using a KS function 

. The strength optimized design differs from the stiffness optimal design in several of the 
patches. 

 

      Figure 2. Optimal design for strength of single-layered plate divided into 8x8 patches and discretized by 
96x96 elements. 

 
The design problem has also been solved using p-norm functions, but in general the use of KS 
functions seems to yield optimization problems that are easier to solve. This is also the 
general observation of other studies, see, e.g., the derivations and discussions of these two 
global strength measures for optimization purposes in [10]. 

4.2 Multi-criteria optimization of generic main spar from wind turbine blade 
The approach is also shortly demonstrated in the following for multi-material design of a 
generic main spar from a wind turbine blade subjected to the maximum flapwise bending load 
case. The midsection of the main spar is divided into 16 patches, each consisting of 10 layers 
of equal thickness. The candidate materials are GFRP oriented at 00, -450, 450, and 900, GFRP 
±450 biax non-crimp fabric mats, and foam material. The objective is to minimize the failure 
index in the main spar while fulfilling compliance and mass constraints. 1/5 of the design 
domain should be filled with foam material. The FE model and the parameterization are seen 
on Figure 3, and the results are listed in Table 4. The model consists of 1652 9-node shell 
elements, and thus the number of computed effective FI values in each iteration is 1652 x 16 x 
2 = 52864. These are reduced to 16 global strength measures by using a KS function  for 
each of the 16 patches where the 20 highest values in each patch are taken into account. Both 
constraints are fulfilled for the final design.  
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      Figure 3. Generic main spar from wind turbine blade. 

 

 

 

Table 1. Results obtained for main spar example. 

 
6 Summary and conclusions 
The paper has illustrated a novel method of including strength criteria in multi-material 
topology optimization of laminated composites. Focus has been on possible strategies for 
handling a very large number of strength criteria together with many design variables, and the 
paper has illustrated the use of applying global strength measures associated with patches of 
the finite element model used for the discretization. Both Kreisselmeier-Steinhauser functions 
and p-norm functions have been successfully applied, and two examples have illustrated the 
type of results that can be obtained by extending multi-material topology optimization with 
the proposed methodology for handling strength criteria. 
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