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Abstract 
Gradients in Li+ ion concentration distribution in a carbon fiber are accompanied by non-
uniform fiber swelling leading to development of mechanical stresses. During lithium 
deintercalation these stresses may lead to initiation and growth of radial cracks in the fiber. 
This phenomenon decreases the mechanical properties of fibers if used in structural batteries 
and reduces the charging properties of the battery by initiating exfoliation of layers on the 
fiber surface. The radial crack propagation and possible damage evolution scenarios are 
analyzed using linear elastic fracture mechanics. 

  
 

1 Introduction 
One of the materials with a potential for use as electrodes in Li-ion batteries is carbon fiber. In 
future structural batteries these carbon fibers will have also a load bearing function.  Fiber 
degradation in addition to reduced load bearing function may affect also the ion diffusivity 
and the number of charge-discharge cycles with high energy efficiency. During the 
intercalation process Li+ ions enter the fiber via interface by diffusion process, see Fig. 1a. In 
the beginning the ion concentration has a gradient with high concentration at the fiber surface. 
Ion concentration gradient in the material leads to anisotropic volumetric changes (swelling) 
in the transversally isotropic carbon fiber characterized by β3 and β1 in axial and radial 
directions respectively. Due to the concentration gradient the outer region of the fiber has 
larger free swelling strains than the inner region. Since displacement continuity has to be 
satisfied radial stresses σr are positive (the outer region by tempting to expand more applies 
radial tractions to the inner part) whereas hoop stresses σθ are negative in the outer region and 
positive in the inner region. At the end of the diffusion process the concentration gradient 
decays and so do all mechanical stresses. The radial diffusion process and corresponding 
stress distributions in the fiber as well as in spherical particles have been analyzed previously, 
for example in [1,2] using series expansion obtaining concentration distribution as a function 
of the radial coordinate. 
During the deintercalation, Fig. 1b (1/4 of fiber cross-section is shown), the outer region loses 
ions first and would shrink which is constrained by the inner region which is still in the 
swelled state. Equilibrium is reached with outer regions being under tensile hoop stresses 
(compressive σθ in the inner regions). Strength based failure criteria are applicable to analyze 
possible sites, time instants and mechanisms of failure initiation. The damage development 
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has to be approached by fracture mechanics methods. In repeated charging and discharging 
cycles we may expect radial crack initiation and growth during discharging (deintercalation). 
The crack growth can start in quasi-static manner from the surface or in a fatigue manner 
during deintercalation in repeating cycles. 
The diffusion process can be very complex, generally speaking, the system to analyze 
contains an electrolyte where the ion concentration can change and have a gradient and the 
fiber/electrolyte system may be surrounded by other solid materials with certain mechanical 
properties and their own ion diffusion parameters. 
 
 
 
 
 
 
 
 

 
 

Figure 1. Li+ ion diffusion: a) schematic geometry; b) crack due to positive hoop stresses during deintercalation. 
 
The objective of the presented paper is to analyze the Li+ ion diffusion in the carbon fiber 
solving numerically the time and coordinate dependent diffusion problem. The static elasticity 
problem is solved in selected instants of time corresponding to certain concentration 
distribution, the stresses are analyzed. Radial cracks are introduced and trends in their growth 
are analyzed using Virtual Crack Closure Technique (VCTT) well known in Fracture 
Mechanics. 
In this paper we simplify the problem by considering a single fiber in an infinite source of 
ions. The focus is on internal stresses in the fiber due to concentration gradients and not to the 
mechanical constraint of surrounding materials which are parts of the structure of the battery. 
We assume a very low transfer resistance of the electrolyte. Hence, the ion concentration in 
the electrolyte does not change during intercalation or de-intercalation. 
 
2 Theoretical background 
2.1 Ion concentration in the carbon fiber 
We consider an infinite electrolyte with uniformly distributed carbon fibers characterized by 
fiber content Vf. This system can be represented by a cylindrical unit cell with a long fiber 
surrounded by an electrolyte which may have also nonzero elastic and swelling constants. 
During the intercalation Li+ ions move into the fiber and their distribution along the radial 
coordinate can be described by concentration distribution which follows diffusion equation  

  
 CDtC    (1) 

  
In (1) C is the relative ion concentration in the fiber with respect to available sites, ∆ is 
Laplace operator and D is diffusion coefficient.  
If the fiber is undamaged or if cracks are in radial direction the diffusion is in radial direction 
only and the concentration does not depend on θ. Eq.(1) is a particular case of a more general 
equation [3].  
At the fiber surface r=rf we require that the Li+ flux N is related to the local current density in 
the electrolyte 
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 FiN    (2) 
  

The flux at the fiber surface according to [3] is 
  

 CDcN  0   (3) 

 
In (3) ׏ is the gradient operator, c0 is the total site concentration in the host material (the 
maximum concentration of lithium ions inside the fiber if all sites would be occupied). Using 
for the current flow expression from [1] we obtain boundary condition  

  
0))(( ''

0  Rca CCkkCDc at frr                                           (4) 

  
Constants in (4) are introduced in [1]. Parameter CR has a meaning of saturation concentration 
of ions in the fiber. 
Introducing normalized coordinate and time 

  
 frrx  2

frtD   (5) 

  
the diffusion (1) and the boundary condition (4) can be written in dimensionless form 

  
 CC x    (6) 

  
0)(  Rx CCBC  at frr   0

'' )( DcrkkB fac                                  (7) 

  
Operators with index x are defined replacing r by the normalized radial coordinate x. 
By this procedure all unknown parameters listed above are reduced to one unknown 
parameter B (Biot constant). Varying this parameter from zero to infinity we can cover all 
possible combinations of parameters, kc', ka', D, c0 and rf. 
As an initial condition for intercalation we assume that at t=0 the concentration is zero 

  
 0)0,( trC   (8) 

  
Since the diffusion problem is linear, we can assume CR=1 when calculating the concentration 
distribution during intercalation.  
During deintercalation the electrochemical parameters change affecting the CR and B values. 
As an extreme case we assume in calculations CR=0 and vary Biot constant B. The initial 
condition in this case is 

  
 1)0,( trC   (9) 

  
2.2 Stress distribution in the carbon fiber 
Plane strain solution is obtained if εz0=0, generalized plane strain solution corresponds to the 
case when εz=const obtained from requirement that the axial force is equal to zero. 
Stress-strain relationships for transversally isotropic fiber (index 1, 2 and 3 correspond to r, θ 
and z directions) are 

  



ECCM15 - 15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

4 
 




1

12

13

31
01

1

EEE
Cc rzr                                   (10) 

  

rz EEE
Cc  

1

12

13

31
01

1
                                  (11) 

  




1

31

1

31

3
03

1

EEE
Cc rzz                                   (12) 

  
In (10)-(12) βi, i=1,3 are free swelling coefficients of the fiber. 
The diffusion problem and the elastic problem are decoupled. We can first find the 
concentration distribution using (6), (7). The concentration distribution C(r,θ,τ) is used as 
input in the elastic problem which can be solved at any arbitrary instant of t. If the electrolyte 
elastic modulus is very low it should not constrain the deformation of the fiber. 
 
2.3 Thermo-mechanical analogy 
Solving the intercalation problem we can select CR=1 and the ion concentration in the fiber 
will vary between 0 and 1. The concentration profiles for other values of CR are proportional 
to the calculated and can be obtained by simple multiplication. 
Similar conclusions apply to the elastic stress problem: elastic stresses for cases when CR≠1 
can be obtained by multiplying the obtained stress state by CR. In parametric analysis we do 
not need to consider separately parameter CR and parameters βi. In the stress expressions the 
ion concentration C is always multiplied by swelling coefficients  βi, i=r,θ,z and by c0.  
The mathematical description of the concentration distribution (6), (7) is the same as for heat 
conduction problem with convection boundary conditions: parameter B has the meaning of 
the heat transfer coefficient, C is analogous to the temperature distribution and CR is the value 
of temperature in the surrounding medium, see [4]. This analogy was used to employ finite 
element code ANSYS to find concentration and stress distributions. 
 
2.4 Fracture mechanics approach 
To follow the growth of a certain damage entity (crack) we have to introduce it in the model. 
After that energy based criteria can be used to analyze the growth quantitatively.  
In Fig. 2a a part of the fiber with a radial crack of length lr is shown (lr∈[0,1] ). During the 
deintercalation the crack is open due to positive hoop stresses and its further growth in the 
radial direction by dlθ has to be studied. The propagation is in pure Mode I (opening mode) 
and it is governed by Mode I energy release rate GI(x). In quasi-static case the used fracture 
mechanics criterion is 

  
 cGG    (13) 

  
In (13) G is the strain energy release rate and Gc is its critical value. It has to be noted that: a) 
Gc may be mode mixity dependent; b) due to anisotropic fiber it may be direction dependent. 
In fatigue loading one can assume that the crack growth is governed by a power law 

  
 mGAdNdl )(   (14) 

  
In (14) A, m are material constants, ∆G=Gmax-Gmin is the change of the strain energy release 
rate between state where it is the highest and the state where it has minimum. The strain 
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energy release rate contains two components GI and GII corresponding to the opening and 
sliding modes respectively 

  
 III GGG    (15) 

  
Each of these components can be calculated using the VCCT: the energy required to create a 
unit of a new crack surface, dl is equal to the work to close this surface. In the VCCT we 
assume that the displacement distribution at the tip of the crack which is infinitesimally longer 
is the same as for the initial crack size.  
 
3 FEM model 
A two phase (fiber and matrix electrolyte) model was created using FEM software code 
ANSYS version 13.0. Since we account for the radial cracks in the fiber the axial symmetry 
of the problem is lost. First the transient ion concentration problem was solved by generating 
the carbon fiber phase only and applying the convection boundary condition (7) directly on 
the outer fiber surface. In other words, solving the diffusion problem the effect of the 
electrolyte is presented by boundary condition (7). According to Section 2, the results depend 
only on one parameter, B. We assume that the electro-chemical constants remain unchanged, 
and hence the different values of B are caused by different values of diffusivity D. As a 
consequence, the time scales, see (5), are different. This becomes important if we compare 
results for several cases at distinct time instances. According to Eq.(5) the relation between 
normalized times for cases with D1 and D2  is τ1=(D2/D1)τ2. This relationship was used to 
recalculate all results to the same normalized time. Two cases were analyzed: 1) with B=500; 
2) with B=5. The relation between diffusion coefficients for Cases 1 and 2 is D1=0.01D2. The 
initial conditions on all nodes of the fiber were specified by (8) or (9) for intercalation and 
deintercalation respectively. 
 

  

 

Figure 2. a) FEM model for calculating radial crack growth related energy release rate b) schematic 
representation of a radial crack. 

In the second step the mechanical problem was solved. The matrix phase was added to the 
fiber phase and the elastic properties of both phases were defined.  Stress distributions were 
found corresponding to selected instants of time with given concentration distribution. Only ¼ 
of the total transverse FEM model was used in calculations.  
Fig.2 shows the geometry of the FEM model, the crack face position corresponds to the 
angular coordinate of θ=π⁄4. Due to the symmetry conditions on the horizontal and on the 
vertical axis, the fiber in this model has four cracks with 90° between them. 
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4 Results and discussion 
4.1 Input parameters 
The elastic and swelling parameters are listed in Table 1. Subscript f in Table 1 denotes fiber. 
The stress distributions were also calculated for a case with matrix elastic modulus Em= 100 
MPa. 
The axial free swelling strain in Table 1 was obtained by extrapolating the data from [5]. 
In [5] the swelling strain β3

fc0CR was experimentally estimated as 0.003 for the measured 
capacity of 135mAh/g at 1 hour charge. 

  
fE3 [GPa] fE1 [GPa] fG31 [GPa] f

31  f
12  R

f Cc03 R
f Cc01 mE [GPa] m  

300 30 20 0.2 0.45 0.009 0.1 1 0.3 

Table 1. Elastic properties of constituents for the reference case calculation. 
 
In [6] it was shown that for PAN based IMS65 carbon fiber electrodes the capacity can be 
increased by up to 3 times when charging slower, meaning that more Li+ ions can be 
intercalated leading to higher swelling. Based on these findings, the longitudinal swelling 
strain was assumed equal to β3

fc0CR = 0.009 to account for the most extreme possibility. 
 
4.2 Stress distributions 
In Figs.3 and Fig.4 ion concentration, radial stress σr and tangential stress σθ are presented for 
intercalation with B=500 and B=5 respectively. The results are reduced to the same time 
scale: the various instants of the normalized time are calculated as t*=τ1=0.01τ2. At fixed time 
instants the concentration distribution in Fig.3 has higher gradients than in Fig.4 because the 
diffusion coefficient is 100 times higher and the diffusion is much faster. The higher gradients 
in concentration result in higher values of the stress components in Fig.3 compared to Fig.4. 
During the intercalation the radial stress is positive with the maximum on the fiber axis. In the 
central region the hoop stress σθ values are similar to the radial stress values. In the interface 
region they are almost two times higher but they are compressive. Hence, the only damage 
made that could be expected to initiate in the intercalation phase is cracks in the central region 
because of combined action of radial and hoop stresses. The values of these stresses are not 
relatively high and the probability of this damage mode as compared with other possibilities 
described below is low.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

      Figure 3. Concentration and stress distributions during intercalation with B = 500.   
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Figure 4. Concentration and stress distributions during intercalation with B = 5. 

 
Results presented in Fig. 3 and 4 are for intercalation. During deintercalation the initial 
concentration distribution is uniform (C=1); ions start to leave the interface region. The 
concentration distribution dependence on time can be obtained from data in Fig. 3 and Fig. 4 
by creating a mirror picture with respect to the axis  C=1  and shifting the result by one unit 
down. The stress distributions in Fig. 3 and Fig.4 are just changing sign. Hence, the high hoop 
stresses σθ become positive and since they are roughly two times higher than the tensile radial 
stress during intercalation, we can expect that during deintercalation radial crack can be 
created in Mode I (due to the assumed symmetry). The effect of the electrolyte elastic 
properties on the stress distributions was investigated changing the elastic modulus of the 
electrolyte to 100MPa, see Table 2. Since the influence on the stress distribution is very small, 
the described sequence of events is not changing. In following calculations the value 
Em=1MPa is used. 

  

fV  mE [GPa] *t  )0( xr [MPa] )1( xr [MPa] )1( x [MPa] 

0.3 1 25 38.47 0.00286 -54.11 

0.3 100 25 38.00 0.1262 -54.58 

Table 2. Parametric analysis of dependency of stresses on matrix elastic modulus Em. 
 
4.3 Radial crack growth during deintercalation 
The conditions for the radial crack growth were analyzed using the model described in 
Section 3. Results are presented for B=500 only. Fig.5 shows Mode I energy release rate G 
for the radial crack growth during deintercalation. According to Fig.5a in the beginning of the 
deintercalation the GI curves are monotonously decreasing with the radial crack length lr. One 
can visualize the presented curves as evolution of one curve which is changing its values and 
shape with the time. In the beginning (t*≤2.5) this curve has growing values in increasing time 
instants, after that the values at the same lr are decreasing. In a quasi-static case (criterion 
(13)) with GC the description of events is as follows. Assuming a certain initial crack length 
lr

0, see Fig.5a, this crack will start to grow at the time instant when the GI curve corresponding 
to the reached concentration distribution crosses the horizontal Gc curve in the point lr=lr

0. 
Since in this part of the deintercalation the GI curve is growing with the time the cross-point 
with Gc curve is moving with the time to the right, which means that the radial crack is 
growing. After reaching t*≤2.5  the GI curve starts to decrease, which means that the cross-
point is moving to the left. This means that the GI value for the reached cracks length is lower 
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than GC and the crack growth stops. It will not grow further in the following intercalation-
deintercalation cycles. If the GC value is very high, the GI curve will never cross the GC curve 
and the radial defect will never grow in a quasi-static manner. In such case the radial crack 
can grow during the cycles of charging as the result of fatigue which may be governed by 
(14). The ∆G during one cycle depends on the crack length. According to (14) the ∆G value 
determines the rate of the crack growth. For short radial crack it is large and the crack growth 
rate with the number of deintercalation cycles is high. With increasing radial crack length the 
∆G reduces and the growth rate slows down and eventually stops (the values at lr=0.7 are 
close to zero). 

  

 

      Figure 5. GI in J/m2 for radial crack growth during deintercalation, B =500. 
 
 
5 Conclusions 
Analysis of  ion concentration distributions and stress distributions showed that radial cracks 
may appear in the fiber during the deintercalation. Growth of this type of cracks was analyzed  
calculating strain energy release rate using Virtual Crack Closure technique. In a quasi-static 
case these cracks are growing stably with time. The growth stops when due to ion 
concentration gradient change with time the strain energy release rate starts to decrease. 
The radial crack can grow also in fatigue with increasing number of intercalation- 
deintercalation cycles. The fatigue crack growth rate is highest when the crack is short and 
becomes equal to zero when the radial crack length reaches 70% of the fiber radius. 
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