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Abstract 
Piezoelectric composite plates constitute an important element of smart structures. These 
structures are often exposed to high temperature environments. When the thermal stresses 
increase to a certain level, the structure may lose its elastic stability, and thermal buckling 
occurs. Most of the published results are approximate solutions obtained by means of 
simplified two-dimensional models. Three dimensional solutions are desirable in order to 
investigate performance of such structures more accurately, particularly for thick plates. A 
3D finite layer method is used for the analysis of piezoelectric composite plates; in particular 
for the thermal buckling of antisymmetric angle-ply piezoelectric composite plates. The effects 
of material properties and structural geometry are investigated and the results are compared 
with available solutions  

 

 

1 Introduction  

Piezoelectric composite plates composed of piezoelectric layers and fibre-reinforced plastic 

layers constitute an important element of smart structures. These structures are often exposed 

to high temperature environments. As temperature rises, the thermal stresses in the structure 

build up. When the thermal stresses increase to a certain level, the structure may lose its 

elastic stability, and thermal buckling occurs. Several research works have been conducted to 

investigate the thermal buckling behaviours of smart composite plates. However, most of the 

published results are approximate solutions obtained by means of simplified two-dimensional 

models according to a variety of plate theories with varied complexities [1]. Therefore, 

whenever possible, three dimensional solutions are desirable in order to investigate 

performance of such structures more accurately. This is especially important for the relatively 

thick plates. The obtained results will provide important information, which cannot be 

extracted from two-dimensional analysis, and the solutions will also be useful for verification 

of other analysis tools such as a new plate theory and related numerical methods. In this 

context, Kapuria and Achary [2] have recently published the exact 3D solution for thermal 

buckling of piezoelectric cross-ply laminates using state space approach, and important 

findings are presented. However, to the authors’ knowledge, the 3D thermal buckling analysis 

of piezoelectric angle-ply laminates has not been reported. 

For a simply supported rectangular plate, the finite layer method is the most efficient 

numerical method in the 3D analysis. In this method, each lamina in a composite plate is 

modeled by one or more finite layers. Within each finite layer, the trigonometric functions are 

used for the inplane interpolations of displacements, whereas the polynomials are employed 
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for the interpolations in the thickness direction. Thus, the three dimensional analysis is 

transformed into a series of one dimensional analyses by virtue of the orthogonal properties of 

the trigonometric functions. Consequently, the results are more accurate than any analysis 

based on the plate theory since the solutions are true 3D solutions. On the other hand, the 

analysis is more efficient than 2D finite element analysis because the 3D analysis has been 

reduced to one-dimensional. Recently, the present authors have conducted the finite layer 

thermal buckling analysis of piezoelectric cross-ply laminates, yielding satisfactory accuracy 

and efficiency [3]. 

In the present study, the finite layer method is extended to the 3D thermal buckling analysis 

of simply supported rectangular piezoelectric antisymmetric angle-ply laminates. The 

laminate may also include some symmetrical cross-plies. The present analysis takes into 

account the full coupling between the thermal, electrical and mechanical fields, whereas the 

material properties are assumed to be independent of both the temperature and the electric 

field. In addition, the pre-buckling state of the plate is assumed to be steady. Therefore, 

temperature distribution in the plate is independently determined based on the equation of 

heat conduction; and the associated thermal stresses are computed accordingly. Then, the 

geometrical stiffness matrix is formed in the same way as in the elastic 3D buckling analysis. 

The critical temperature rise and the buckling mode can be obtained by solving related matrix 

equations.   

Numerical results are presented to verify the proposed method. The effects of material 

properties and structural geometry are investigated. 

 

2 Coupled thermal, electrical, mechanical fields  

For the materials with fully coupled thermal, electrical and mechanical fields, the constitutive 

equations can be given in the tensor notion as [1-4]: 

 

 ijkijkklijklij eC   (1) 

 

 ijijjkijki peD   (2)

 





T

c
EpS v

iiijij   (3) 

where ij and i j are respectively the components of the stress tensor and strain tensor, iD and 

i  are respectively the components of electric displacement vector and electric field vector, S 

is the entropy, and   is the temperature rise from the initial temperature T . The 

coefficients ijklC , ijke and i j  denote respectively the elastic constants, the piezoelectric 

constants and the dielectric permittivity. The quantities ij  and ip  refer respectively to the 

stress-temperature expansion coefficients and pyroelectric constants, whereas   and vc  

respectively represent the mass density and the specific heat per unit mass at constant strain. 

The strains components i j have the following relationships with the displacement 

components iu :  

  jkikijjiij uuuu ,,,,
2

1

2

1
                                 (4) 

 

whereas the electric fields are related to the electrostatic potential   as: 

ii ,                                       (5) 

In addition, the solution of a steady-state problem should satisfy the following variational 

equations to maintain the equilibriums of stresses, charges and heat, respectively: 
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   
AV

dAutdV iiijij         (6) 

dADdVD
AV

nii    ,        (7) 

 
AV

dAqdV njiij  ,,         (8) 

where  it  and nq  denote the applied surface traction and heat flux, respectively, V and A 

respectively stand for the volume and surface area of the considered domain, whereas 

ij represent the thermal conductivity. For a steady-state problem, the temperature distribution 

can be determined from Eq. (8) independently, and Eq. (3) is not required in the 

corresponding solution procedure. 

 

3 Pre-buckling solution 

 A uniform temperature rise T  is considered in the present study in order to simplify 

comparison with other solutions. A set of uniform actuation potentials )( kz  may also be 

applied to the surfaces kzz   of piezoelectric layers. In addition, it is assumed that the plate 

remains flat without any out-of-plane bending and the inplane displacements remain zero as 

these loads increase proportionally until buckling occurs [2]. For the antisymmetrical angle-

ply piezo-laminates, it can be verified that above loads only yield inplane stresses 
x , 

y  , 
xy ,  

strain 
z  and electric field 

z , which all remain constant within each layer.  Thus, the initial 

stresses 
x , 

y  and 
xy  in each layer can be determined from the following constitutive 

equations: 

 

TeQ xxzzx   
3113  (9)    

 

TeQ yyzzy   
3223  (10)   

 

TeQ xyzzxy   
3663  (11)  

 

03333  TeQ zzzzz    (12)  

 

TpeD zzzzz 333      (13) 

 

where ijQ are the elastic moduli, i je are the piezoelectric moduli, xx , yy , xy  and zz  are the 

stress-temperature expansion coefficients, zz  is the dielectric permittivity, 3p  is the 

pyroelectric constant, the superscript  represents the pre-buckling state, and tz
   with 

t denoting the thickness of piezoelectric layer, and  denoting the increment of   across the 

layer.  For an actuator layer, the electrical field 
z is given. Therefore, 

x , 
y  and 

xy  can be 

directly calculated by means of Eqs (9) to (11), after the value of 
z  is obtained from Eq. (12). 

For a sensor layer, 
zD  is equal to zero. Thus, 

z  and 
z can be obtained using Eqs (12) and 

(13).  Then, 
x , 

y  and 
xy  are readily calculated from Eqs (9) to (11).  
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Figure 1.  A Finite Layer 

 

4 Finite layer method for buckling analysis 
In the finite layer analysis of a piezoelectric composite plate, each material layer is modelled 

by one or more finite layers. Each finite layer has a number of equally spaced nodal planes, 

which are parallel to the plate middle plane 0z , and labelled from the top to the bottom of 

the finite layer with i = 1, 2, … (Fig. 1). During buckling process of a simply supported 

rectangular antisymmetric angle-ply laminate, the increments of generalized displacements at 

any point within a finite layer are expressed in terms of the respective nodal values using the 

following interpolations: 
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where u, v, w denote incremental displacement components respectively in the x, y and z 

directions (Fig. 1),    refers to incremental electrostatic potential,  r and s are the numbers of 

series terms required in the analysis, nd is the selected number of nodal planes in a finite 

layer,  zN i  is the Lagrangian polynomial defined as: 

       
 




nd

ijj ji

j

i
zz

zz
zN

,1

                                             (15) 

a and b are the side lengths of the plate  in the x and y directions, respectively.  

Using above shape functions and calculated initial inplane stresses, the generalized stiffness 

matrix and geometrical stiffness matrix of the finite layer can be formed by following 

standard procedures commonly used in the finite element and finite layer analysis [1, 3, 5]. 

Then, the critical temperature rise and buckling mode can be determined by solving related 

matrix equations. If material properties and initial inplane stresses remain constant in the 

inplane directions, the different pairs of series terms become uncoupled by virtue of the 

orthogonal properties of the trigonometric functions. Thus, the related matrix equations in the 
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analysis can be formed and solved separately for each pair of series terms (m, n), so that the 

efficiency of the analysis is enhanced drastically 

5 Numerical examples 

5.1 Thermal buckling of square (p / 0 / 90 / 90 / 0 / p) piezoelectric laminates 

A square piezoelectric laminate analyzed by Kapuria and Achary [2] is reanalyzed here to 

further validate the proposed method. The laminate with side length a and thickness h consists 

of a ( 0 / 90 / 90 / 0 ) sublaminate with four Graphite-Epoxy plies of 0.2h thickness each, and 

two continuous PZT-5A layers of thickness 0.1h each bonded to the upper and lower surfaces 

of the sublaminate. The material properties are given as:  

Graphite-Epoxy: ( 1E , 2E , 3E , 12G , 23G , 31G ) = (181, 10.3, 10.3, 7.17, 2.87, 7.17) GPa 

    ( 12 , 13 , 23 ) = (0.28, 0.28, 0.33);  ( 1 , 2 , 3 ) = (0.02, 22.5, 22.5) K/10 6  

 

PZT-5A: ( 1E , 2E , 3E , 12G , 23G , 31G ) = (61.0, 61.0, 53.2, 22.6, 21.1, 21.1) GPa 

( 12 , 13 , 23 ) = (0.35, 0.38, 0.38);  ( 1 , 2 , 3 ) = (1.5, 1.5, 2.0) K/10 6   

 ( 31d , 32d , 33d , 15d , 24d ) = (-171, -171, 374, 584, 584) Vm /10 12  

 ( 11 , 22 , 33 ) = (1.53, 1.53, 1.5) mF /10 8 ;  3p   = 0.0007 KmC 2/  

All the four edges are simply supported with deflection and in-plane displacements being 

fixed on the middle plane along each edge. Two sets of electrical condition are considered, 

namely the closed-circuit (CC) condition with both the top and bottom surfaces of each 

piezoelectric layer being grounded and the open-circuit (OC) condition, where only the inner 

surface of each piezoelectric layer is grounded, while the outer surface remains free.  

The resulting normalized critical temperature rise 22 / haTT crcr   for 16105.22  K  is 

given in Tab. 2. The exact three-dimensional solutions of Kapuria and Achary [2] are also 

listed in the same table for comparison. Results show that the proposed method yields 

excellent agreement with the exact 3D analysis.  

 

a / h Closed-circuit condition Open-circuit condition 

Present Kapuria Present Kapuria 

5 6.9954 - 3.8430 - 

10 11.721 11.721 6.6242 6.6242 

100 15.604 15.604 9.0142 9.0143 

Table 1 Critical temperature rises 22 /haTT crcr   of square )/0/90/90/0/( pp   laminate 

 

5.2 Thermal buckling of 10-layer square antisymmetric angle-ply laminate 

The square antisymmetric angle-ply composite plate analyzed by Noor and Burton (1992) is 

selected here to verify the proposed method. The plate has side length a, thickness h and 10 

equally thick layers alternatively oriented at   and   degrees from the x-axis. The four edges 

are simply supported with deflection and normal inplane displacement fixed on middle plane. 

The material properties are assumed as: 1E = 15 E , 2E = 3E = 1.0 E , 12G = 13G = 0.5 E , 23G = 

0.3356 E , 12 = 13  =  0.3, 23 = 0.49, 1 = 0.015  , 2 = 3  = 1.0  , where E  and   are the 

normalization factors respectively for the elastic moduli and the coefficients of thermal 

expansion.   

In all the examples of this study, each lamina is modelled by one finite layer with four nodal 

layers. The resulting normalized critical temperature rise crcr TT   and corresponding 

buckling mode (m, n) are listed in Tab. 1 as the function of   and thickness-to-length ratio 

h/a. It can be seen that the present results are in a close agreement with the exact 3D solutions 

of Noor and Burton [6].   
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A simply supported square piezoelectric laminate with length-to-thickness ratio a/h= 10 

consists of a sublaminate with even number of equal thick Graphite-Epoxy layers 

alternatively oriented at  and -  from the x-axis. Two continuous PZT-5A layers of 

thickness 0.1h each are bonded to the upper and lower surfaces of the sublaminate. All other 

parameters, conditions and analysis model are identical to the previous example. The resulting 

critical temperature rises 22 / haTT crcr   for 16105.22  K  with buckling mode (1, 1) are 

shown in Fig. 3. It can be seen that  crT  reduces for the laminate with 2 sublaminate layers but 

rises for those with 4 and 8 sublaminate layers, as  increases from 0 to 45 . 

 

h / a Method  = 0 deg.  = 15 deg.  = 30 deg.  = 45 deg. 

0.01 Present 0.7463 10-3 0.1115 10-2 0.1502 10-2 0.1674 10-2 

Noor  0.7463 10-3 0.1115 10-2 0.1502 10-2 0.1674 10-2 

0.10 Present 0.5769 10-1 0.7888 10-1 0.1099 0.1193 

Noor 0.5782 10-1 0.7904 10-1 0.1100 0.1194 

0.25 Present 0.1767 0.2073   

Noor 0.1777 0.2087   

(m, n)  (1, 2) (1, 2) (1, 1) (1, 1) 

Table 2 crcr TT   of 10-layer square antisymmetric angle-ply ( /- …) laminates 

 

5.3 Effect of angle  and number of layers 

A simply supported square piezoelectric laminate with length-to-thickness ratio a/h= 10 

consists of a sublaminate with even number of equal thick Graphite-Epoxy layers 

alternatively oriented at  and -  from the x-axis. Two continuous PZT-5A layers of 

thickness 0.1h each are bonded to the upper and lower surfaces of the sublaminate. All other 

parameters, conditions and analysis model are identical to the previous example. The resulting 

critical temperature rises 22 / haTT crcr   for 16105.22  K  with buckling mode (1, 1) are 

shown in Fig. 3. It can be seen that  crT  reduces for the laminate with 2 sublaminate layers but 

rises for those with 4 and 8 sublaminate layers, as  increases from 0 to 45 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.  Effects of 

 on crT  for square )/...///( pp     laminate of a/h=10  

               under open-circuit conditions (NSL = Number of Sublaminate Layers) 
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