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Abstract  

Composite beams and columns are analyzed and designed either with explicit beam 

expressions or with numerical (e.g. FE) methods, both require the knowledge of the cross 

sectional properties, i.e. the bending-, the shear-, the torsional-, warping-, axial stiffnesses 

and the coupling terms. These properties are calculated either by using kinematical 

relationships (e.g. cross sections remain-plane after the deformation of the beam) or by 

asymptotic methods, however in both cases the accuracy depends on the assumed degree of 

freedom of the model. These assumptions may lead to inaccurate or contradictory results. In 

this paper a new theory is presented in which no kinematical assumption is applied, rather the 

properties are derived from the accurate (three dimensional) equations of beams using limit 

transition. The theory includes both the in-plane and the torsional-warping shear 

deformations.  As a result of the analysis the stiffness matrix of the beam is obtained which is 

needed for either analytical or numerical (FE) solutions. 

  

 

1 Introduction 

 

When composite beams and columns are designed the stresses and strains are calculated, and 

the buckling loads and in the natural frequencies are determined. In the analysis the cross 

sectional properties (the beam’s stiffness matrix) must be known. Its calculation can be more 

complex for composite beams than for isotropic ones, because of the substantial differences in 

their response to external loads. The behaviour of isotropic and composite beams is illustrated 

below with the example of a thin walled I-beam.  

When an isotropic beam is subjected to tension or bending the cross sections remain plane 

(Figures 1a and b), while under torsion cross sections warp (Figure 1c).  

 

      Figure 1. Deformation of an isotropic I-beam subjected to (a) tension, (b) bending and (c) torque  

In the presence of structural constrains the problem of torsion is more complex and – for a  

built in I-beam – can be illustrated as the loading of the flanges by a force couple (Figure 2a). 
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Due to these loads the flanges undergo bending deformations (when the shear deformations of 

the flanges are neglected, Figure 2a) and shear deformations (Figure 2b). Note that for long 

beams the shear deformations of the flanges are negligible. For isotropic beams the tension, 

bending and torsion are uncoupled. 

 

      Figure 2. Deformations of a built-in isotropic I-beam subjected to torsion when (a) the shear deformations of 

the flanges are neglected and (b) due to the shear deformations of the flanges 

 

      Figure 3. Possible deformations of a composite I-beam subjected to tension. (a) the warping of the cross 

section, (b) the tension-torsion coupling and (c) the shear deformation of the flanges 

 

      Figure 4. a) Example of an I-beam with unbalanced flanges. (b) Under pure tension there is no twist, 

however, the cross sections warp. (c) When one end is fixed, the beam subjected to tension will twist. 

For thin-walled composite beams the following phenomena may occur which are significantly 

different from the behaviour of isotropic beams: the cross section may warp under pure 

tension or pure bending (the first one is illustrated in Figure 3a), there are tension-torsion, 

tension-bending and bending-torsion coupling (the first one is illustrated in Figure 3b), there 

is a tension-shear coupling in the flanges as illustrated in Figure 3c. 

We further illustrate the difference between isotropic and composite beams when both 

tension-shear coupling (Figure 3c) and structural constrains are present. We consider the 

example of an I-beam with unbalanced flanges (e.g. the fibers in the upper flange are in the 

+45°, while the fibers in the lower flange are in the -45° direction, Figure 4a). Under pure 

tension the flanges undergo shear deformation (the cross section warps), however, there is no 

twist along the beam (Figure 4b) and there is no tension-twist coupling. When one end is 

built-in and the other end is free, under tension the rotation of the beam will be significant 

due to constrained warping (Figure 4c). (When tGI  is negligible the entire beam will undergo 

a uniform rate of twist.) Note that this effect is significant also for long beams. 

Isotropic beam theories and the corresponding computer codes can take into account all the 

effects explained in Figures 1 and 2 except the shear deformation due to torsion and structural 

constraint (Figure 2b), note, however, that for isotopic beams this effect is negligible. 

Anisotropic beam theories (and the corresponding  computer codes) can handle the warping of 

the cross sections (Figure 3a), which means that cross sections do not remain plane under pure 

tension and bending, and also the coupling among tension, torsion and bending, however they 

do not include 

- the shear deformation of the flanges due to restrained warping (Figure 2b), 

- the tension-shear coupling in the flanges ( Figure 3c). 
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We emphasize that for composite beams the restrained warping induced shear deformations 

are important and – except for long beams – can not be neglected [1]. In addition, when 

tension-shear coupling is present (Figure 4b and c) theories which do not include this effect 

may lead to unacceptable results even for long beams. 

In this paper we present an analysis of thin-walled composite beams, taking into account 

restrained warping induced shear deformation and the tension-shear coupling. We will 

summarize only the basic idea of the method to calculate the stiffness matrix of composite 

beams, the details of the analysis was presented recently by the authors  [2]. 

Beam theories give the relationships between the displacements of the beam axis, generalized 

strains, internal forces and loads. These relationships are given by the strain-displacement 

relationships (geometrical equations), material law (constitutive equations) and the 

equilibrium equations. These are written as: 

 uΘε ˆ= , MεN = , NΘp *ˆ= ,                                                 (EQ1) 

 

      Figure 5. The stress resultants (internal forces). 

 

      Figure 6. Illustration of Saint Venant torque, restrained warping induced torque and bimoment on an I-

beam. 

where u , ε ,N , p  are the vectors of the displacements, generalized strains, internal forces 

and loads, respectively. M  is the (symmetric) stiffness matrix, while Θ̂  and *
Θ̂  are operator 

matrices. For the spatial case the minimum number of internal forces is six due to the six 

stress resultants (Figure 5): the axial force, the two transverse shear forces, the two bending 

moments and the torque. (By neglecting the shear deformations the shear forces can be 

eliminated, but for composites – as it is discussed in [1] – this is not recommended.) It is well 

known that for open section beams the theory including these six forces only is inaccurate, 

and the torque must be divided as Saint Venant and restrained warping induced torque: 

ωTT +SV  (Figure 6), where the latter one is the derivative of the bimoment (or moment 

couple), xMT ∂∂= /ωω . The equations of this theory – often referred to as Vlasov’s theory – 

are given in the top part of Table 1. (The matrix *Θ̂  is not given, however, it can be obtained 

directly from the transpose of Θ̂ , if the signs of the first derivatives are reversed.) In this 

theory six displacements must be taken into account (see Table 1, top): where u , v and w  are 

the displacements of  the axis, ψ  is the rotation of the cross section about the beam’s axis and 

yχ , zχ  are the rotation of the cross sections about the z and y axes. For cross sections made 

of isotropic or orthotropic materials only some of the elements in the stiffness matrix are zero 

[1], which are denoted by stars in Table 1. 
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Torsional-warping shear deformation theory

 

           

( )
( )

( )
( )

( )
( )

( )
( )

































































−′
−′

−′

′

′−

′−

′

′−

=



































 Γ

Θ

B

ˆ

S
1

1

1

/1

/1

ϑ
χ
χ
ψ

ϑ
γ
γ
ϑ
ρ
ρ
ε

z

y

z

y

y

z

x

w

v

u

44444444 344444444 21

   





































Θ=

































−

−

−

ω

ω

ω
T

V

V

T

M

M

N

M

m

m

m

t

p

p

p

z

y

y

z

x

y

z

z

y

x

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

SV

*

 



































 Γ

































=





































S

SV

/1

/1

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ϑ
γ
γ
ϑ
ρ
ρ
ε

ω

ω

ω

ω

z

y

y

z

x

z

y

t

y

z

z

y

y

z

x

S

S

S

GI

EI

EI

EA

EI

T

V

V

T

M

M

N

M

M

L

  

































=

****

****

****

****

****

****

****

****

orM  

Table 1. Beam equations for the spatial problem (Prime denotes derivative with respect to x. Stars in the orM  

matrix show the nonzero elements in the stiffness matrix of an orthotropic beam.) 

Shortcomings of the classical theory. It is well known that composite structures undergo 

higher shear deformation than structures made of conventional materials, and hence the shear 

deformation should not be neglected. For restrained warping the torsional shear deformations 

must also be taken into account. This is illustrated in Figure 2 for an orthotropic I beam. 

According to Vlasov’s theory, when an I beam is subjected to torsion there is no shear 

deformation of the flanges (Figure 2a), when, in fact, the shear deformation (illustrated in 

Figure 2b) may be significant. This effect can be modelled by the torsional-warping shear 

deformation theory. It can be argued that for longer beams this effect is negligible. This may 

be true for orthotropic beams, but not for anisotropic ones, as it was shown in Figure 4. 
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2 Torsional-warping shear deformation theory 

To understand the torsional-warping shear deformations, first we consider the case when a 

beam deforms only in a plane (e.g. in the x-y plane). In the classical beam theory [3], (when 

the shear deformation is neglected), the displacements of the axis in the x- and y directions  (u 

and v)  are  used  to  calculate the strains and deformations of any point of the cross section. 

When the shear deformation is taken into account, according to Timoshenko’s beam theory 

(see Kollár and Springer [1] for composite beams), three displacement functions of the axis 

are required: the displacement along and perpendicular to the axis (u and v) and the rotation of 

the cross section ( yχ ). In other words, the slope of the displacement consists of two parts, the 

rotation of the cross section and the shear strain:  

yy
x

v
γχ +=

∂
∂

.                                                          (EQ3) 

This is illustrated in Figure 7b.  

 

      Figure 7. In-plane deformations of a beam (a) without and (b) with shear deformations. 

When a beam is subjected to torsion, in the classical (Vlasov or Wagner) theory only the 

rotation of the cross section (ψ ) about the beam’s axis is used [3], [4] to calculate the 
displacements of any point of the cross section. When the axial warping is constrained, an 

open section beam carries the torque load mainly by the bending and shear of the flanges, as 

illustrated in Figure 2 for a symmetrical I-beam. Note, however, that according to Vlasov’s 

theory the shear deformations of the walls (Figure 2b) are neglected. To overcome this 

shortcoming, analogously to Timoshenko’s beam theory, we introduced [5] a new 

displacement function (in addition to the rotation of the cross section, ψ ): the rate of twist 

due to warping ( Bϑ ). In other words, the rate of twist ( x∂∂ /ψ ) consists of two parts, one 

when the shear deformation is zero and one when the warping is zero: 

SB ϑϑ
ψ

+=
∂
∂

x
.                                                   (EQ4) 

We must give credit to Wu and Sun [6], who suggested first the introduction of this new 

function. 

In summary, in this theory seven displacements must be taken into account: 

 u ,   v ,   w ,   ψ , yχ , zχ , 
Bϑ  (EQ5) 

where u , v and w  are the displacements of  the axis, ψ  is the rotation of the cross section 
about the beam’s axis, yχ , zχ  are the rotation of the cross sections about the z and y axes, 

and Bϑ  is the rate of twist due to warping. This theory was developed for orthotropic open 

[5] and closed [7] section beams, the stiffeness matrix is given in Figure 8.  
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      Figure 8. Stiffness matrix of Vlasov-, Timoshenko- and torsional-warping shear deformation theory. 

The new element in the stiffness matrix is the rotational shear stiffness ωS . For a few cases 

analytical expressions are given for the calculation of the stiffnesses of orthotropic composite 

thin walled beams including the rotational shear stiffness [5],[7]. 

The equations of the torsional warping shear deformation theory are summarized in Table 1. 

3 Methods to calculation of the stiffnesses 

For anisotropic beams there are 8 × 8 elements of the (symmetric) stiffness matrix if the 

torsional-warping shear deformation theory is used. There are several methods, which can be 

used to determine the stiffnesses of a beam, the most important ones are discussed below.  

The most common approach of beam theories that the cross sectional distributions of the 

displacements (or stresses, strains) are approximated by given functions. This is the basic idea 

of the classical Bernoulli theory, the Timoshenko beam theory, or Vlasov’s theory. The 

literature of this approach was summarized in [2]. The most accurate and powerful method of 

Jung et al. [8] is based on the combination of the first order shear theory and torsional-

warping deformations (Vlasov and Timoshenko theory), so it results in a 7×7 full stiffness 

matrix (Figure 8) for open section anisotropic beams. 

Unfortunately, only for simple cross sections and layups can the correct distribution of stress 

or strain field be assumed a priory. For arbitrary layup, the distribution of the cross sectional 

displacement is rather complex, and hence a different approach is needed. In variational 

asymptotic approach the displacement approximations are refined in an iterative manner. The 

mathematical basis can be found in Antman [9]. Finite element codes, NABSA and VABS 

relying on this method are worked out by [10], [11], [12]. The most adequate asymptotic 

beam theory, VABS (Variational Asymptotic Beam Section Analysis) is worked out by 

Hodges [13]. 

In VABS refined beam models can be used: For open section beams either the Timoshenko 

theory or the Vlasov theory is applied [13], [14]  which results either in a 6×6 or a 5×5 

stiffness matrix (Figure 8). For closed section beams the Timoshenko theory is applied [13] 

and [14]  which results in a 6×6 stiffness matrix (Figure 8). The solution of VABS is valid for 

arbitrary cross sections and also for initially curved and twisted beams [13], however, it 

contains neither the restrained warping induced shear deformations nor the effect of restrained 

warping for closed cross sections. 

4 Method of Solution 

The basic idea of calculating the stiffenesses is as follows. The displacements are assumed in 

the form of sine (or cosine) functions: xαsin , xαcos  ( L/πα = ). Then the strains, internal 

forces and loads are determined. Each contains either sine or cosine functions only. Now the 

average strain energy per unit length of the structure is determined for the beam model and 
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also for the 3D model. Both are function of 1/L. The stiffness matrix M  is determined from 

the condition that the coefficients of the Taylor series expansions of the strain energies are 

equal. The key of the solution is that for trigonometrical functions the differential equation 

system can be replaced by ordinary (matrix) equations: If xαsin , xαcos  ( L/πα = ) is 

differentiated with respect to x  the result is a trigonometrical function multiplied by α . As a 
consequence, for trigonometrical displacements the differential equation system Equation 

(EQ1) can be replaced by ordinary equations, where the coefficient matrices contain α . The 
details of the solution is given in [2]. 

5 Numerical examples 

We developed a computer code, designated as BEAMSIN to calculate the stiffnesses of thin 

walled anisotropic beams. The code is based on the 3D analytical solution of beams presented 

in [2]. When the stiffnesses are known the displacement can be calculated either numerically 

(FE) or analytically [2]. Here only the results of two examples [2] are presented. 

0
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0,0025

0,003

0 10 20 30 40

ANSYS

PRESENT

VABS

x
 

      Figure 9. Rotation � of an I-beam cantilever with unbalanced layups subjected to  tensile force 

 
      Figure 10. Rotation � of a box-beam cantilever subjected to a torque load 

The first one is an I-beam cantilever with unbalanced flanges subjected to a tensile load 

(Figure 4c), which causes the rotation of the cross section. These calculations were compared 

to the results of a finite element (ANSYS) analysis, where shell elements were used. The 

solutions of the VABS analysis [13], [14] are also included. VABS does not contain the 

restrained warping induced shear deformations, hence it cannot predict well the tension – 

warping-shear coupling. The second example is a box beam cantilever subjected to a torque at 

the end. A “Classical” beam theory which does not contain the restrained warping effects give 

constant rate of twist along the beam length ( tGIT /=ϑ ). The results of the present and the 

“classical” theory and the finite element calculation are plotted in Figure 10 for two cross 

sections. When the stiffnesses of the walls are identical (bottom curves) the effect of 

restrained warping is negligible. When the stiffnesses of the wall differ from each other 

significantly (top curves) the restrained warping play a significant role in the deformations. 
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6. Discussion 

We presented a new method to determine the stiffnesses of anisotropic beams without 

assuming kinematical relationships. The applied theory contains the restrained torsional 

warping (Vlasov theory), the in plane shear deformations (Timoshenko theory) and the 

torsional-warping shear deformations.  According to our knowledge none of the previous 

theories contained all these effects for anisotropic beams. These effects may be neglected for 

long beams with balanced layup, however omitting the new term (i.e. the torsional warping 

shear stiffness) may lead to unacceptable results for short beams and also for long beams, 

when the layup is unbalanced. 

Acknowledgement. This work was supported by the Hungarian Scientific Research Fund 

(grant number K-77803). 
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