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Abstract 
This work concerns a new ply-based parameterization for performing simultaneous material 

selection and topology optimization of fiber reinforced laminated composite structures while 

ensuring that a series of different manufacturing constraints are fulfilled. The material 

selection can either be performed on the basis of different materials, and/or consist of 

discrete selection of the same orthotropic material with different orientations of the fibers. 

The problem considered is the optimization of a general laminated composite shell structure 

with respect to maximum stiffness (minimum compliance) with an additional constraint on the 

maximum allowable amount mass.   

 

1 Introduction  
The application of laminated composites in structural design gives the engineers the 

opportunity to tailor the material properties. Doing so can result in efficient and light weight 

structures when compared to applying traditional isotropic materials such as steel and 

aluminum. However, this design freedom also complicates the process from idea to a 

manufacturable product.  When designing structures with complicated geometries and load 

scenarios as found in boat hauls, aircraft fuselages, and wind turbine blades, the application of 

efficient finite element analysis has become essential in order to validate the integrity of the 

structure.  

Still, for these large structures where the number of plies may exceed several hundreds at 

different locations, determining a suitable layup can become a time consuming process. 

Hence, the application of numerical optimization algorithms in combination with a global 

finite element model can aid engineers during the design process to determine a suitable 

layup. Commonly engineers apply a parameterization which coincides with the finite element 

discretization, or similar grid formulations, where each design region is defined by either a 

single element or multiple groups of elements, also known as patches. These design regions 

are assigned a set of design variables e.g. the number of plies, ply-thicknesses, or angular 

orientation.  However, in critical areas such as around ply-drops these global finite element 

models are not able to capture local states of stress surrounding these areas.  In order to 

capture these local effects full 3D continuum or higher order shell models have to be applied. 

Nevertheless, the gain in precision is paid with additional time for performing the 

calculations. As a consequence, engineers tend to apply design guidelines/manufacturing 

constraints (MC) in combination with traditional shell element models so as to obtain an 

accurate solution for global quantities of the structure, while avoiding critical local effects 

through the manufacturing constraints. Implementing manufacturing constraints in an 

optimization algorithm either as explicit mathematical expressions or implicitly through the 
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choice of parameterization will reduce the amount of time spend on post-processing the 

optimized design so as to obtain a manufacturable, high performance product. 

 

1.1 Optimum Design under Manufacturing Constraints  

Manufacturing constraints have been investigated to some extent, among which are thickness 

constraints to prescribe a maximum allowable variation in laminate thickness [1], and 

thickness continuity between layers in adjacent design regions [1-6]. Similarly, fiber 

continuity between layers in adjacent design regions has also been investigated [3,5,7,8]. 

Another example is to limit the number of identical contiguous plies so as to avoid matrix 

cracking [2,9-11].  Many of the referenced authors apply genetic algorithms as either the 

primary or as a secondary algorithm to determine a suitable layup; however, these algorithms 

are prone to apply an exhaustive amount of evaluations of the objective function, which 

typically is dependent upon a solution from a finite element analysis. Hence, these methods 

are not well suited for application on large industrial products. Other methods and algorithms 

have also been applied throughout the literature to optimize laminate layups, with and without 

manufacturing constraints, where the ones with most impact have been summarized in 

[12,13].  

In a recent paper by Sørensen and Lund [14] four manufacturing constraints have been 

applied for topology and thickness optimization of laminated composites together with the so-

called Discrete Material Optimization (DMO) method [15].  In their approach they apply 

generalized SIMP and RAMP interpolation schemes for multi-material interpolation, which 

rely on a system of sparse linear constraints to ensure that just a single material is chosen 

among the available candidates [16]. The four presented manufacturing constraints ensure 

fiber continuity in the individual layers within the design region, limit the maximum rate of 

ply terminations, limit the number of contiguous plies in each laminate, and prevent 

intermediate voids from appearing. The presented method is limited to applying a single 

orthotropic material; hence the material selection problem is instead to determine a suitable 

orientation of the fibers from a selection of predefined orientations. Also, their presented 

work is limited to maximum stiffness optimization subjected to a mass constraint.  

 

2 Problem Formulation 

The presented work is a generalization of the method developed by Sørensen and Lund [14], 

which enables the application of different materials e.g. orthotropic and isotropic so as to 

obtain sandwich like structures. Also, the current implementation enables the application of 

different objective and constraint functions e.g. maximize buckling load factors subjected to 

mass and compliance constraints just to name a few options. Furthermore, it permits analysis 

of general composite structures where the geometry can be subdivided into any number of 

predefined patches. These patches can either be assigned a unique set of design variables or 

be setup to share selected variables e.g. all patches can share the material selection variables 

in selected layers whereas each patch has its own set topology variables distributed to the 

individual layers.  

 

2.1 Multi-Material Selection with Variable Thickness 

The material selection is an integer problem where one single material has to be selected from 

a finite set, and thus selecting an optimum material is a combinatorial problem. The binary 

material selection variable can be specified for all layers in all patches as in (1). 

 

 
 (1) 
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However, obtaining a solution using integer optimization methods, even for small problems, 

becomes computational overwhelming if a solution is to be obtained within a reasonable 

amount of time. Employing a continuous relaxation of the integer problem, in the form of 

interpolation functions, makes it possible to solve these problems using standard gradient 

based optimization algorithms. In this work, such an approach has been selected in the form 

of the DMO method as described in [16].  

 

The variable thickness design can be obtained by introducing a binary topology variable 

 in all layers for all patches with properties as shown in (2). 

 

 
 (2) 

 

Hence, the thickness optimization is achieved by either adding or terminating individual plies. 

Still, as with the integer material selection problem, this approach also becomes a 

combinatorial problem. However, by employing a similar relaxation, as with the material 

selection, and adding a series of different manufacturing constraints, the problem can be 

successfully solved applying gradient based optimization methods. With these relaxations the 

effective constitutive matrix for a given layer can be determined as shown in (3) utilizing the 

generalized RAMP interpolation scheme [16] 

 

 

 (3) 

 

where  with  assigned the stiffness properties of void such that 

   and  are penalization powers utilized in the RAMP interpolation 

scheme. 

 

2.2 Manufacturing Constraints 

The manufacturing constraints applied in this work are almost identical to those presented in 

[14], where the changes made are to facilitate the application of patches and additional 

materials. Nevertheless, they are presented here for reference.  

 

2.2.1 Identical Patch Material: MC1 

Manufacturers typically apply fiber mats which have been cut to fit a specific region. Hence, 

applying a patch size which fits with the manufacturer’s processing facilities will reduce the 

amount of time spent on post-processing the optimized design. This manufacturing constraint 

is implemented in how the optimization model is setup; hence, no explicit mathematical 

constraints are required. It is recognized, that applying a fixed patch layout will limit the 

design space significantly when compared to a setup where all elements are parameterized 

individually. However, from a practical point of view, patches are more desirable. 
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2.2.2 Thickness Variation Rate: MC2 

To avoid problems with delamination and matrix cracking, the variation in laminate thickness 

can be constrained so a specified number of plies only can be dropped between adjacent 

patches. The constraint is setup according to how the patches are located, as shown in Figure 

1. 

 

 
Figure 1: Thickness variation among adjacent patches 

 

Here patch no. (p) has four neighboring patches among which is patch no. (p+1). The 

thickness variation is defined from a slope perspective, where the allowable number of layers, 

which can be terminated, is limited by (4) where  | . 

 

 (4) 

 

The constraint is dependent upon the specified patch layout, where each patch can have a 

unique number of neighbouring patches with the upper limit being that one patch has all other 

patches as neighbour’s i.e. . 

 

2.2.3 Limit Contiguous Fiber Orientations: MC3 

If many contiguous plies with the same fiber orientation are stacked on top of each other, 

matrix cracking can become an issue. Hence, a constraint limiting the number of equal 

contiguous layers has been implemented. In the current implementation, the constraint is set 

to disregard isotropic material candidates. The specified limit of contiguous layers is defined 

as . The constraint is formulated as: 

 

 
 (5) 

 

2.2.4 Preventing Intermediate Void: MC4 

From a manufacturing point of view closed intermediate voids inside a layered composite 

structure are undesirable. In order to avoid this phenomenon the following constraint scheme 

has been adopted. In [14] the specific constraint is referred to as scheme 4, and it allows for a 

smooth transition of the topology variables in contiguous layers given a limit threshold 

denoted by T as shown in (6). 

 

 

 (6) 

 

This approach results in the layers gradually being “build” from the bottom up.  The 

constraint modifies the bounds of each topology variable and so has to be updated in each 

design iteration. 

(p)

(p+1)
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3 Numerical Examples 

In the following two examples will be presented. Both examples utilize the same loading and 

boundary conditions which are of a corner hinged plate subjected to a point force in the center 

of the plate as shown in Figure 2.  

 
Figure 2: Corner hinged plate with point force 

 

The plate is modeled using symmetry conditions; hence fiber angle continuity across 

symmetry lines is only satisfied for 0° and 90° orientations. However, the examples still 

serves as a proof of concept. The plate has seven equally thick layers, which are numbered so 

the bottom layer is number one; hence the top layer is number seven. The dimensions of the 

quarter plate are 1m by 1.5m which has been subdivided into 26x39 equally sized, square, 

nine-node shell elements. All layers in each element have been assigned a topology variable. 

The material selection is done on a patch level, where each layer spanning all elements is to 

be assigned a unique material candidate. The objective is to minimize compliance within a 

maximum allowable mass constraint. The bottom layer is constrained to have full mass. The 

optimization is thus focused on the selection of the material and its distribution within the 

bounds of the geometry. The examples have been solved using the SLP algorithm available in 

SNOPT 7.2, which has been implemented in the in-house finite element program suite named 

MUltidisciplinary Synthesis Tool (MUST) developed by the Department of Mechanical and 

Manufacturing Engineering at Aalborg University. 

 

3.1 Example 1: Determination of fiber orientations and topology  

This example is presented in [14] and is repeated so to compare the obtained results. The 

problem is to determine the optimum fiber orientations for all seven layers, where each layer 

is to be assigned a unique orientation throughout the span of the plate. The material is 

unidirectional GFRP with the following properties: E1 = 34GPa, E2 = E3 = 8.2GPa, ν12 = 0.29, 

G12 =G13 = 4.5GPa, G23 = 4.0GPa, and ϱ = 1910.0kg/m3. The void material is defined as a 

massless isotropic material with a stiffness of E=10
-6 

E1 and with Poisson’s ratio ν = 0.29. The 

optimization specifications are as follows: The number of candidate orientations is set to four: 

45º/-45º/90º/0º. The allowable thickness change is ±1 ply thickness i.e. S=1 in (4). The 

allowable number of consecutive layers is 2 i.e. CL=2 in (5). Intermediate void is not allowed, 

where the threshold parameter is set to T=0.1 in (6). Finally the mass constraint is set to half 

of the plate’s full mass determined as when there is material in all layers. 

 

3.2 Example 2: Determination of material, fiber orientation, and topology 

This example is an expansion of the example 1, where the difference lies in the material 

selection now also contains an isotropic foam material. The foams material properties are: 

E1=65Mpa, ν12 = 0.47, ϱ = 200.0kg/m3. The mass constraint has been modified so the limit is 

set to a mass equivalent to four GFRP plies and three ply-thicknesses of foam material. 
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4 Results 

In this section the results from examples 1 and 2 are presented. For each example a 3D plot 

shows the obtained solution. Each plot is accompanied by a table showing the fiber 

orientations for the orthotropic material in the respective layers together with the final 

compliance and mass value. For both examples, the solutions have converged to full 0-1 

designs for both material selection and topology variables. 

 

4.1 Example 1 

 

 

Figure 3 Density Distribution of Corner Hinged Plate Example 1 (Symmetric Modeling) 

Layer 1 2 3 4 5 6 7 

Orientation +45 0 +45 0 +45 +45 0 

Compliance 0.399354 Mass ≤ Max Mass 10.0275 ≤ 10.0275    

Table 1 Layup, Final Compliance, and Obtained Mass for Example 1 

4.2 Example 2 

 

Figure 4 Material Distribution of Corner Hinged Plate Example 2 (Symmetric Modeling) 

Layer 1 2 3 4 5 6 7 

Orientation 0 0 - - - 0 0 

Compliance 0.227554 Mass ≤ Max Mass 12.3600 ≤ 12.3600 

Table 2 Layup, Final Compliance, and Obtained Mass for Example 2 

Orthotropic GFRP

Isotripic Foam
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5 Discussions 

 

5.1 Optimum results from example 1 

The topology obtained in this example is quite similar to the solution shown in [14]. 

However, the layups are different between the two solutions. In [14] layers 1 and 2 are 

swapped in accordance with table 1, thus obtaining a symmetric layup. However, the solution 

is sensitive to the chosen penalization scheme and move-limit strategy. Thus a similar design 

could possibly be obtained by applying different schemes. Nevertheless, the results show that 

method is able to capture similar topologies as presented in [14]. For reference, the final 

compliance value obtained in [14] is 0.390443 for the example.  

 

5.2 Optimum results from example 2 

As can be seen from Figure (4) the optimized design represents a sandwich structure, where 

all layers in all patches have full density. The two top and two bottom layers have been 

assigned the unidirectional GFRP material orientated at 0 degrees in accordance with Figure 

(2). The three center layers have all been assigned the foam material; hence a sandwich design 

has been obtained. This design is in accordance with the specified mass constraint, which 

allows for such a design. Reducing the allowable amount of mass will thus result in a tapered 

sandwich design, however, further constraints on the material selection has to be implemented 

in order to control that the top and bottom layers in each element always represents face 

sheets made from fiber reinforced material. Otherwise, the foam material has the option for 

being the top layer, which would make an ill posed sandwich structure. This additional 

constraint is left for future work.  

 

6 Conclusions 

A generalization of the method developed by Sørensen and Lund [14] has been presented. 

The method is capable of performing simultaneous material selection and topology 

optimization on general laminated composite structures. For fiber angle and topology 

optimization, the results obtained are in good coherence with the results presented in [14] 

giving similar topologies. However, the obtained layups in the presented example differ 

slightly in comparison. For material, fiber angle, and topology optimization the method is 

capable of determining a sandwich design which fits with the assigned mass constraint. In the 

present work, compliance (maximum stiffness) optimization has been shown throughout; 

however, other criteria can be applied e.g. mass minimization, buckling load factors, or 

eigenfrequencies. Results obtained applying such objective functions will be outlined in the 

presentation at ECCM15. 
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