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Abstract  
A mixed model, numerical-analytical, is presented that allows one to predict the elastic 
properties of carbon nanotube (CNT)/polymer composites containing a random distribution 
of CNTs, while taking account of the curvature that they show when immersed in the polymer. 
This hybrid approach is a significant advance over micromechanical modeling and can be 
applied to all nanostructured composites. 

 
 

1 Introduction 
The sp2 carbon-carbon bond in the basal plane of graphene is the stiffest and strongest in 
nature. Both experiments and atomistic simulations have confirmed that CNTs really have an 
extremely high modulus [e.g., 1-3] (Young’s modulus > 1 TPa), and a strength around 100 
GPa that is significantly higher than the few GPa of the carbon fibers. Carbon nanotubes also 
have a 5-20% elastic limit of the strain before failure and very low density ~1.75 g/cm3.  
One way to take advantage of the marvelous properties of the carbon nanotubes consists in 
incorporating them into a matrix to build composite materials. The best candidates for this 
task are undoubtedly polymers, which thanks to their strength, toughness, low weight, and 
easy processing have been used in a broad variety of industrial application. The extraordinary 
mechanical properties, together with high ratios (100-10000) of geometric aspect, stiffness-to-
weight, and strength-to-weight, all point to carbon nanotubes as potentially ideal reinforcing 
agents in advanced composites. The potential of the CNTs, as reinforcement structures, 
mainly depends on the ability to reach a homogenous dispersion within the matrix and to 
transfer the mechanical load from the matrix to the CNTs. If the CNTs are aggregated in a 
bigger structure, if the matrix deforms under loading, they will be separated in some smaller 
bundles without giving any significant contribute to the composite stiffness. When the 
cohesion at the interface between the phases is weak, the load is not transferred to the CNTs 
that will not be able to reinforce the matrix. In this case the CNTs behave like if they were 
holes or nanostructured defects. These difficulties hinder the production of high-performance 
composites based on CNTs. As a result, despite some encouraging results [for example, 4], 
there are many experiments showing only modest improvements in strength and in stiffness of 
the composites after the incorporation of the CNTs [for example 5-7]. Andrews et al. [5] got a 
limited increase of 15% in the elastic modulus, compared with the pure matrix, and a decrease 
in mechanical strength at a concentration of 5% volume fraction of multi-walled carbon 
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nanotubes (MWCNTs). Xia et al. [6] prepared obtained an increase in Young modulus of 
varying from 8.8% to 36%, using up to 3% in weight of CNTs. Similar results has been found 
by Song at al. [7]. The mechanical properties of composite were increased of 17% in stiffness 
using 1.5% in weight of CNTs. The small improvements mainly depend on the weak bond at 
the interface CNTs/matrix.  
Many numerical models have been developed [8-11] in attempts to improve the understanding 
of the stiffening effects of CNTs in a polymer matrix. These studies are based on the 
micromechanical models, because the atomistic models are computationally too expensive to 
simulate the behavior of the composite. Each of these micromechanical models assumes 
perfect cohesion between CNTs and polymer matrix; this assumption determines that the 
predictions of the composite mechanical properties are highly optimistic compared with the 
experimental results. Commonly, at the interface between nanotubes and polymer, the 
interactions exist only by mean of the van der Waals bonds, that are able to produce only 
weak normal attraction forces, but they are not able to generate any significant sliding 
resistance, as has been investigated by Frankland et al.[12].  
This article presents a new mixed model, numerical-analytical, which allows to predict the 
elastic characteristics of composites with random distribution of CNTs, taking into account 
the curvature that they show when immersed into the polymer. This hybrid approach 
represents an appreciable evolution over the micromechanical modeling [13-14] and can be 
applied to every nanostructured composites. To simulate the mechanical behavior of CNTs, a 
structural non linear model, previously developed [15], has been adopted; this model is a 
modified version of a known methodology, appreciated by the scientific community [16-19]. 
The approach, useful to investigate the CNTs deformations, is based on a finite element (FE) 
model, carefully developed basing on the knowledge of the spatial distribution of the carbon 
atoms in the nanotube structure and of the nature of the interatomic links. In this model the 
nanotubes properties are updated depending on the state of the local deformations.  
The new methodology has been validated by comparison with the results of laboratory tests 
performed on epoxy resin-CNTs composites.  

 
2. Numerical-Analytical Model 
The model essentially consists of two sections: the first is strictly numerical while the second 
is analytical-theoretical. The numerical part consists of performing a set of seven FE analyses. 
In the analytical-theoretical part the output of the FE analysis is used as input for the Mori-
Tanaka method, a highly reliable analytical tool for the prediction of elastic behavior of 
composite materials. 
 
2.1. The Mori-Tanaka method 
The Mori-Tanaka method allows the determination of the stiffness matrix of a composite 
material consisting of N phases randomly arranged in a three-dimensional space [20-22]. Each 
phase, representing a different type of inclusion, has his own geometry and elastic properties. 
The stiffness matrix of the multi-phase composite is calculated according to the Mori-Tanaka 
approach presented by Weng [22] by the following expression: 
 

{ } { }
11 1

0 0 0
1 1

N N
dil dil

r r r r r
r r

C f C f C A f I f A
−− −

= =

  = + +  
  

        (1) 

 
where C is the stiffness matrix of the N-phases composite, C0 is the stiffness matrix of the 
resin, Cr is the stiffness matrix of the r-th inclusion, dil

rA  is the correlation matrix, or dilute 
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strain concentration tensor, of the r-th inclusion, I is the identity matrix , f0 is the volume 
fraction of resin, fr is the volume fraction of r-th inclusion. 
The matrix dil

rA  correlates the volumetric average of the strains in the r-th inclusion, rε , with 
those felt by the surrounding resin, or farflied strain tensor, 0ε , as follows: 
 

0
dil

r rAε ε=            (2) 
 

( ) 11
0 0

dil
r r rA I S C C C

−− = + −           (3) 

 
where the matrix Sr is the Eshelby tensor, whose form can be expressed in a closed form only 
for inclusions with simple geometry. In this work, the matrix dil

rA is determined performing an 
appropriate set of FE analysis. In the case of CNTs-polymer matrix samples that we have 
manufactured for this study, the investigations performed using the SEM microscope showed 
that the arrangement of the nanotubes, embedded in the polymer, could be well approximated 
by a sinusoidal representation, see for example Figure 1 (a). 
 

 (a)         (b) 

Figure 1. (a) Arrangement of nanotubes within the polymer matrix. Image obtained by SEM microscopy. (b) 
One of the samples in epoxy resin-MWNTs used for three-point bending tests. 
 
Several images, obtained by SEM microscope investigation executed on the broken samples 
after the tests we carried out, show that the nanotubes population, in our samples, is well 
represented by an equivalent inclusion having sinusoidal pattern characterized by the 
following geometric parameters: wavelength λ = 800 nm, width 200 nm, outer diameter 30 
nm, inner diameter 15 nm, number of sinusoid n = 2.  
The expression (1), considering the case of a single equivalent inclusion, becomes: 
 

{ }( ) { }( ) 1

0 0 1 1 1 0 1 1
dil dilC f C f C A f I f A

−
= + +        (4) 

 
The quantities enclosed within the brackets {} have to be submitted to the randomization 
procedure, which allows taking into account the random distribution of the nanotubes 
embedded in the polymer. The equation (4) shows that to calculate the stiffness matrix of the 
composite, it’s necessary to know the correlation matrix 1

dilA  and the stiffness matrix of 
equivalent inclusion 1C . The determination of these quantities has been obtained by mean of a 

numerical set of six FE analysis to calculate the matrix 1
dilA and one further analysis to 

calculate the matrix 1C . A few important considerations need to be made regarding the Mori-
Tanaka approach. The prediction of the Young’s modulus from the original Mori-Tanaka 
approach [20-22] is not very accurate for large volume fraction, this is due to the fact that the 
method is based on a diluted homogenization scheme and that particle interactions is not 
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accounted for sufficiently. An estimate of the limits of the formulation can be found in the 
work of Schjodt-Thomsen and Pyrz [23], the Mori-Tanaka approach was found accurate up to 
a 15-20% volume fraction. Despite this limitation the new approach can be applied to a large 
number of composites since the CNTs are still extremely expensive and production of 
materials with a volume fraction of CNTs higher than 15-20% would be rarely justified by the 
increased performance of the composite. Moreover when the volume fraction of CNTs is high 
it is very difficult to obtain a good dispersion in the matrix.  
 
2.1.1 Calculation of the correlation matrix 1

dilA  
Rewriting in explicit form the equation (2), we obtain the following expression: 
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       (5) 

 
The equation (5) shows that, for the full knowledge of the matrix 1

dilA , 36 independent 
coefficients, of the type ipA , must be determined. To this scope, an appropriate set of six FE 

simulations has been developed, to be performed on a representative volume element (RVE) 
of the material under consideration, consisting essentially of the nanotube immersed in the 
surrounding resin. In each of these six simulations, the RVE is subject to one of the six 
deformations pε , of known value, imposed from outside of the RVE, assigning an appropriate 

displacement field to the external areas of the RVE such that the remaining deformations are 
zero and that one of interest assumes the desired value. After having resolved the analysis, in 
the post-processing step, it’s possible to calculate the average deformations which the 
nanotube is subject to, using the following relation: 
 

i i
j j

jV
i

j
jV

dV v

vdV

ε ε
ε = ≈




   [ ]1...6r ∈           (6) 

 
For each one of these six analyses, the expression (6) allows to determine all the six mean 
deformations which the nanotube is subject to and, thus, all the terms of the matrix 1

dilA using 
the following expression: 

i
ip

p

A
ε
ε

=      [ ]1...6p ∈       (7) 

 
2.1.2 Calculation of the stiffness matrix of the equivalent inclusion 1C  
It has been assumed that the considered inclusion has got a macroscopically isotropic 
behavior and it’s therefore characterized by a Poisson ratio v = 0.19, experimentally verified 
for the CNTs, and an equivalent Young modulus Eeq, which takes into account the presence of 
a non-zero curvature, as that the nanotube has got a sinusoidal pattern. The determination of 
the equivalent Young modulus Eeq has been achieved performing a FE analysis, in which the 
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nanotube is located longitudinally in order to evaluate the stiffness of the sinusoidal waves 
train constituting the CNT. 
 
2.2 FEM model design 
2.2.1 RVE geometry 
The considered model is a representative volume element (RVE), consisting of a CNT with a 
sinusoidal pattern immersed in a cube of epoxy resin which represents the matrix surrounding 
the inclusion. 
 

 
Figure 2. Representative Volume Element. 

 
The CNT and the matrix are two separate elements that interact at the interface by mean of the 
presence of contact elements. Figure 2 shows the representative volume element. The matrix 
surrounding the nanotubes must be sufficient to avoid edge effects on the nanotube during the 
loading step, where a given displacement field is imposed to the external surfaces of the cube 
to cause the desired deformations. This condition requires that the ends of the nanotubes are 
sufficiently distant from the external faces of the resin cube. The parameter to be controlled is 
the volume fraction occupied by the nanotubes into the RVE. To achieve accurate 
simulations, this parameter must meet the following condition: 0.05%CNTf ≤ . 
 
2.2.2 Matrix constitutive model 
The matrix is globally isotropic and is characterized by a linear-elastic behavior. In this case, 
we need to specify the following elastic constants; the resin used in our study, for the 
construction of the samples, has got the following characteristics: the Young module Em=3620 
MPa and the Poisson’s ratio v = 0.39 . 
 
2.2.3 Carbon nanotube 
The used model can be found in the literature [15] under the heading "EOR model" where 
EOR means "Equivalent Orthotropic Representation". The EOR model uses a micro-
mechanical representation, in which the orthotropic planes are aligned with radial r, tangential 
θ and axial z directions of the nanotube. 
 
2.2.4 Contact model 
The considered model for the description of the nanotube-matrix contact, in the normal 
direction, allows us to transmit local forces of attraction between the nanotubes and the 
matrix, simulating, thus, the cohesion between the two materials. During each load increment 
if the tensile stress at the interface nanotube-matrix exceeds the value pmin, the two surfaces 
will be separated and the contact between them will be lost. The tensile stress pmin has been 
set equal to the maximum tensile stress that can occur between the walls of the MWCNT. It 
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has been obtained calculating the minimum of the law that describes the evolution of the 
pressure as a function of the distance between the walls: 
 

10 4

0 0

6

c c
p

c c

ψ     = −    
     

           (8) 

where 83.65 10ψ −= ⋅
2

N

nm
 
  

  and  0 0.34c = [ ]nm . 

Minimizing the expression (8), we obtain: 9
min 1.98152 10p −= − ⋅

2

N

nm
 
  

 

 
2.2.5 Deformation mode 
As mentioned, for the determination of the correlation matrix, it’s necessary that the RVE is 
separately submitted to the three axial strains (ε11, ε22, ε33) and to the three shear strains (ε12, 
ε13, ε23). 
 
2.2.6 Calculation of the equivalent Young modulus of the MWCNT 
The determination of the equivalent Young modulus of the inclusion is performed fixing one 
of the two extreme CNT surfaces and applying to the other one a known displacement (in this 
case it has been chosen to impose 1 10u = nm). Measuring the average strain mediaε , along the 
axial direction of the nanotube, and the corresponding reaction force F, caused by the 
imposition of the required displacement, the equivalent Young modulus eqE  is determined. 

 
2.2.7 Calculation of the Eshelby tensor 
The post-processing step consists in elaborating the results contained in the report files of the 
FE analysis. The numerical result is: 
 

1
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where 3620mE =  MPa, 0.39mν = , 46.0495 10rE = ⋅  MPa and 0.19rν = .  
Rewriting the equation (3) explicating the Eshelby tensor S1, we obtain: 
 

( ) ( ) 11 1
1 1 0 1 0

2.4785 -0.0576 1.1999 -0.0002 0.0010 -0.3649

-1.7092 1.0391 -0.3590 0.0001 -0.0010 0.3947

0.9281 0.5703 0.8378 0.0005 0.0004 -0.0527

-0.0056 -0.0050 -0.0055 0.1558 0.0000 -0.0010

-0.0045 -0.0

dilS A I C C C
−− −   = − − =   

004 -0.0027 -0.0000 0.1417 0.0021

0.1724 0.0015 0.0862 -0.0005 -0.0018 0.4859

 
 
 
 
 
 
 
 
 

   (12) 

 
The knowledge of the Eshelby tensor allows us to predict the evolution of elastic properties of 
the composites as function of the volume fraction of nanotubes in solution.  
 
3. Results 
The batch of samples tested was composed of resin DGEBF, diglycidyl ether of bisphenol-F, 
and 5% volume fraction of MWNTs. The equation (4) shows how the composite stiffness 
matrix is only function of volume fraction of nanotubes in solution, because of all the other 
quantities appearing in it are known.  

 
Figure 3. Trend of Young modulus of the composites as a function of the fraction of nanotubes. The black line 

shows the results predicted using the numerical-analytical model. The points corresponding to a volume fraction 
of 5% indicate the experimental results obtained testing composite samples. 

 
It should be noted that the randomization procedure ensures that the composite stiffness 
matrix is the one of an isotropic material. In Figure 3 the black line shows the trend of the 
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composite Young modulus as a function of the CNTs volume fraction, predicted using the 
numerical-analytical model. The points corresponding to a volume fraction of 5% indicate the 
experimental results obtained testing composite samples. The Figure 3 shows a prefect 
agreement with the experimental results. In Figure 3, we see how the model provides a Young 
modulus of 4096.8 MPa at a volume fraction of 5%. This value is in excellent agreement with 
the mean value of Young modulus of the samples tested, which is 4097.9 MPa. 
 
4. Conclusions 
This article presents a new mixed model, numerical-analytical, which allows us to predict the 
elastic characteristics of composites with random distribution of CNTs, taking into account 
the curvature that they show when immersed in a polymer. The hybrid approach can be 
applied to every nanostructured composites. It has been validated by comparison with the 
results of laboratory tests performed on epoxy resin-CNTs composites. The model allowed us 
to investigate the influence of the CNTs volume fraction. The joint use of two methods, FEM 
and Mori-Tanaka, has enabled the development of a model that ensures high reliability in the 
prediction. The model is perfectly able to be adapted to the case where it’s necessary to know 
the elastic characteristics of composites consisting of inclusions of different nature (forms and 
materials). In this case it will be necessary performing a set of seven FE analyses for each 
type of inclusion in the composite.  
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