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Abstract
A general bayesian framework is proposed for the statistical description of the fatigue damage
evolution in composite materials. A parameterized Markov chain model is proposed for the
evolution of fatigue damage and a bayesian inverse problem is formulated leading to a ratio-
nal way to incorporate full information from fatigue data to model parameters for a specific
parameterization. This methodology has been validated for damage data from the literature,
considering damage as a stiffness reduction over several open hole quasi-isotropic glass-fiber
composite coupons under tension-tension fatigue loads.

1 Introduction
Fatigue in composite materials is a complex-multiscale cumulative damage process, starting
at the beginning of the lifespan [1]. During 80s and 90s, fatigue damage covered an important
area of the composites research topic and nowadays there are a wide spread of fatigue models,
all of them valid in its range of application [2]. Recently, probabilistic damage approaches are
emerging as a suitable tool for fatigue in composites materials [3]. Among them, Markov chain
models have shown ability to account the uncertainty in the fatigue response in composites
along complete fatigue process [4, 5]. However, the increasing need to improve the model
predictability for fatigue diagnosis in a robust sense, requires updating the initial belief on
stochastic models using field data.

In this work, a bayesian framework to infer a non stationary Markov chain model from damage
data is presented, conferring the main step to achieve fatigue diagnosis in composites mate-
rials. To this end, the likelihood function for a nonstationary Markov Chain is imported from
the mathematical literature [6, 7] and adapted for the parameterization originally proposed.
This framework is validated against a data set of damage, considered as a progressive stiffness
reduction, for several open hole quasi-isotropic glass-fiber composite coupons under
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tension-tension fatigue loads. As result, the a posteriori information about a set of Markov
chain parameters can be obtained and further used for the robust reconstruction of the damage
growth process.

This approach confers an efficient way to update the initial believe on a particular fatigue
model using measured data, and in general, to treat evolutive random processes in composites.

2 Methods
The evolution of fatigue damage as a function of cycles is proposed to be modeled by Markov
chains, under the main hypothesis established by the Markov property, which states that the
future of the process only depends on its present state, which is independent of the past. This
phenomenological stochastic approach is based on the theory of Markov Chains [8] and as-
sumes the following underlying assumptions [9, 10]:

1. Damage is a nondecreasing random variable and it passes through an integer and finite
number of states, j = 1, 2, ..., s, until the “absorbing” state s is reached.

2. The time period N over which damage may accumulate is discretized in integer units of
duty cycles (DC), n = 0, 1, ..., N .

3. Damage is only considered at the beginning and the end of a DC, without taking into
account what is happening within a DC.

4. Damage can only increase within a DC from the state at the start of that DC to the next
state.

It follows from the previous remarks that the proposed model is a finite-state (1), discrete-time
(2), embedded (3) Markov process in which the damage accumulation mechanism is of the
unit-jump type (4). At each integer time n, there is an integer-valued random variable (rv) Dn

called the damage state at time n and the damage process is family of rv’s {Dn;n > 0}.
Let then the rv Dn represents the damage state at time or duty cycle n. Thus the probability of
Dn to be in state j at time n is denoted by

P [Dn = j] = pn(j) (1)

The probability mass function of the rv Dn at time n is given by the vector

pn = {pn(1), pn(2), ..., pn(s)} (2)

where
s∑
j=1

pn(j) = 1 (3)

From the theory of stochastic processes, the probability density function (PDF) of damage
after a given number of duty cycles N , pN , is determined by the PDF of the initial damage
state, p0, and the probability transition matrices (PTM), Pn, as

pN = p0

N∏
n=0

Pn (4)
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The PTM summarizes the allowed transitions between damage states. Thus they adopt the
form:

Pn =


p1(n) q1(n)

p2(n) q2(n)

. . . . . .
ps−1(n) qs−1(n)

1

 (5)

where the pj(n) and qj(n) are conditional probabilities that determine if the current damage
state remains or proceeds to the next state at time n, respectively.

2.2 Model Parameterization
For the purpose of inference, the fatigue model described above must be parametrized by
setting the transition probability matrix Pθ dependent on a vector θ of model parameters. So,
let define Pθ = pθij(n)(i, j = 1, . . . , s; n = 0, . . . , N) the probability of state j at time n given
state i at time n−1. A valid parameterization of this stochastic model can be obtain as follows:

Pθ = p0


θ5 1−θ5

θ5 1−θ5

. . . . . .
θ5 1−θ5

1


α

(6)

with α = n× PMS1 (θ1, θ2, θ3, θ4), 0 6 θj 6 1 j = 1 . . . 5.

In this model, the nonstationarity is accounted by means of an unitary time transformation
while the probabilities of transition between states pMij remain time-invariant.

2.3 Bayesian Inverse Problem
In Bayesian statistics, two fundamental states of the information are used for the statistical
inference: the a priori information, that gives the initial relative belief of the model that is ob-
tained independently of the results of measurements, and the likelihood function which express
the information of idealized relationship between data and model in the sense of how good a
model is in explaining the data. In bayesian literature, both together form the basis of a model
class M [11]. It follows that the a priori information, the likelihood function and model pa-
rameters can all be described using probability densities. The former is defined by p(θ|M)

whereas the likelihood function is given by p(D|θ,M), in both cases provided by the model
classM.

The Baye’s Theorem over probability densities, combines them to yield the a posteriori prob-
ability p(D|θ,M) of the hypothetical model specified by θ in the classM,

1Monotonic Cubic Spline
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p(θ|D,M) = c−1p(D|θ,M)p(θ|M) (7)

where c is a normalizing constant that is needed for p(θ|D,M) to fulfill the Theorem of Total
Probability: ∫

Θ
p(θ|D,M)dθ = c−1

∫
Θ
p(D|θ,M)p(θ|M)dθ = 1 (8)

Notice that Bayes’ Theorem takes the initial quantification of the plausibility of each model
specified by θ in the model classM, which is expressed by the prior probability distribution,
and updates this plausibility by using the information in the data D expressed through the like-
lihood function. For the case of a discrete time Markov chain stochastic model, the likelihood
function is based on the Whittle formula [6].

The constant c is a normalizing constant in Bayes’ Theorem and so it does not affect the shape
of the posterior distribution. By means of this property, stochastic simulation based on Markov
Chain Monte Carlo methods can be introduced to obtain the solution of Equation 7.

3 Results
The proposed framework is illustrated in an example considering stochastic damage data from
literature [12] for sixteen quasi-isotropic open-hole S2-glass laminates subjected to a constant
amplitude tension-tension fatigue loading (R = 0.1, f = 5Hz, σmax = 0.5× σu). In this exper-
iment, the observed data d(k) ∈ O came from measurements of relative stiffness decreases for
each k laminate defined as follows:

d(k)(n) =
E

(k)
0 − E(k)(n)

0.6E
(k)
0

(9)

E0 is the initial longitudinal stiffness, E(n) is a stiffness sample measurement in n. For this
data, the most suitable value for duty cycle n was considered to be 500 load cycles with a
Markov chain assembly of s = 25 states. The total number of duty cycles results in N =
213900/500 = 428.

For simplification in obtaining the posterior of model parameters, the non-informative distribu-
tion p(θ|M) = U(0, 1) is assumed which means that, without lack of generality, the parametric
inference is contributed solely by the likelihood function.

To simulate the process, the Metropolis-Hastings algorithm has been implemented with N =

104 trials and proposal variance σ = 0.02. The algorithm configuration was verified to ensure
the chain is ergodic and hence converges to Equation 7 by choosing the first sample distributed
according the target PDF. And also by observing that the sample stabilizes (to the expectation
to target distribution) after the burn-in period, in this case of 115 samples.

The results for the inference of posterior parameters given data are shown in Figure 1.
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Figure 1: Plots of the samples in the Θ space when updating model classM with fatigue data D . In
the diagonal, histograms and kernel density estimate construction for parameters.

The damage diagnosis of the fatigue process, as a result of the robust reconstruction of damage
over the parameter space Θ, can be obtained as follows,

p(X|D,M) =

∫
Θ
p(X|θ,D,M)p(θ|D,M)dθ (10)

where p(X|D,M) is the PDF of damage considering data D and p(X|θ,D,M) represent the
PDF of damage given model parameter θ and data D.

In Figure 2, the damage reconstruction of the fatigue process based on Equation 10 is repre-
sented at several damage steps.
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Figure 2: Representation of cumulative distribution functions (CDF) of damage for different values
of duty cycles (n), when using the proposed parametrized Markov model. In grey: empirical CDF;
dot-line: robust model CDF; solid line: optimum model CDF

4 Conclusions
A new framework is proposed to infer the fatigue-based damage evolution in composites, as
solution of a general bayesian inverse problem. This framework has the versatility for account-
ing for all possible information about data, model and relation between both. Given the

required simplifications, this capability can be used for parameter estimation in fatigue testing,
for model updating with monitoring damage data, or even for selecting the model classes
with best evidence for a specific material data set. The methodology has been validated on a
example for obtaining the posterior PDF of model parameters from two nonstationary models,
in terms of fitting to stochastic damage data. It has been shown that the posterior PDF and
the associated model evidence can be obtained using a Markov Chain Monte Carlo method
like Metropolis Hastings algorithm with a moderate computational cost. Other phenomena in
composites like porous density, crack growing intensity, etc., that imply cumulative processes
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can benefit by applying this method by only obtaining a set of data from a state variable
observed through time.

Further work is needed to extrapolate this method to Continuos Time Markov Process that
would allow to incorporate whatever heterogeneous set of data is available.
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