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Abstract  
A micromechanical multi-site modelling of the effective thermo-elastic properties of 
heterogeneous materials, derived from the classical integral equation is proposed. The 
fundamental solution based on the Green function of elasticity problem is used to derive a 
general expression of elastic and thermal strain concentration tensors. This last one enables 
the development of specific models such as multi-site Mori-Tanaka, Self-consistent or 
Generalized Self-Consistent schemes. The main advantage of the model resides in its 
capability to take into account the morphological as well as the topological material micro-
architecture. The proposed model is implemented in finite elements software in order to 
analyse the reliability of electronic assemblies such as flip-chips.  
 
1 Introduction  
In many industrial applications composite materials are frequently subjected to thermo-
mechanical loads. For the special case of a flip-chip assembly made of different materials, its 
reliability requires a precise estimation of its overall thermo-mechanical behaviour. From the 
considered microstructure, homogenisation approaches based on the Eshelby equivalent-
inclusion concept [1], can be used for this purpose. The determination of thermo-elastic 
behaviour of micro-heterogeneous materials has been partially investigated since initial works 
of Levin [2], Hill [3] and Kröner [4]. 
The original Mori-Tanaka approach [5] was suggested for composites with reinforcements of 
similar shape. For two or multi-phase composites containing inclusions with similar shape and 
alignment, Benveniste et al. [6], established that the Mori-Tanaka and the self-consistent 
approaches lead to a diagonally symmetric effective stiffness tensor. 
The present work aims to propose an alternative micromechanical formulation based on a 
multi-site formulation of the Mori-Tanaka approach. Applied to biphasic composites, the 
provided modelling allowed analysing the effects of morphology and topology of 
reinforcements on the equivalent behaviour. Finally, the corresponding model is implemented 
for finite elements calculations related to a flip chip assembly in order to analyse its 
reliability. 
 
2 Multi-site micromechanical modelling 
The global properties of a micro-heterogeneous material can be determined knowing the 
strain localisation tensors. Let's consider a heterogeneous material with its local constitutive 
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relation specifying the stress  ( )rσσσσ  in function of the total strain ( )εεεε r and homogeneous 
temperature increment θ : 

( ) ( ) : ( ) ( )θ= −r c r r rσσσσ ε βε βε βε β                                                                                                       (1) 
where ( )c r

 
and ( )ββββ r are respectively local elastic and thermal properties of the considered 

material. Following the approach developed by Ahaouari [7] and Ahaouari et al. [8], a 
thermo-mechanical integral equation can be established: 

[ ]( ) ( ) : ( ) : ( ) ( )r

V

dVδ θδ′ ′ ′ ′ ′= − − −∫ε Ε Γ ε βε Ε Γ ε βε Ε Γ ε βε Ε Γ ε βr r r c r r r                                                               (2) 

where ( )′−ΓΓΓΓ r r  is the modified Green tensor, deduced from the Green’s displacement tensor 

G  of an infinite homogeneous reference medium (rc , rββββ ): 

, ,

1
( ) ( ) ( )

2ijkl ik jl jk ilG GΓ ′ ′ ′ − = − − + − r r r r r r                                                                          (3) 

Deviations of local thermo-elastic properties with respect to this reference medium are 
defined as: 

( ) ( )

( ) ( )

r

r

δ
δ
 = −


= −

c r c r c

r rβ β ββ β ββ β ββ β β
                                                                                                                 (4) 

As developed by Kpobie et al. [9], Eq. (2) leads to a system of algebraic equations for the 
unknown total strain of each constituent Iεεεε :  

( ) ( )
1

: : 1,2,...,
N

I r IJ R J J J

J

I Nθ
=

= − ∆ − ∆ =∑ε Ε ε βε Ε ε βε Ε ε βε Ε ε βT c c                                            (5) 

The tensor ( )IJ rT c  describing mechanical interactions between constituents through the 

reference mediumrc , is called "interaction tensor": 

( ) ( )1

I J

IJ r
I

V V

dV dV
V

′ ′= −∫ ∫T c r rΓΓΓΓ
                                                                                          

(6) 

The solution of Eq. (5) is expressed in terms of localisation operation with respect to the strain 
of reference medium rΕΕΕΕ and the temperature increment θ  as: 

:I I r Iθ= +ε Εε Εε Εε ΕR r                                                                                                      (7) 
The considered case concerns a matrix (Mc and Mββββ ) containing ellipsoidal inclusions with the 
same shape, alignments and thermo-elastic properties (c andββββ ). Inclusions can be arranged 

in various ordered manner as illustrated by Fig. 1a, where 1l , 2l  (and 3l ) are distances in three 

orthogonal directions between the centres of neighbouring inclusions.  

 
a) Inclusions with similar shape  

b) 3D spatial arrangement of 
reinforcements 

Figure 1. Two-phase ordered composite material 



ECCM15 - 15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

3 
 

 
To take into account the topological texture of the composite, interactions of these N-1 
inclusions are considered. Moreover, the total volume fraction of inclusions is denoted

2

N

I
I

f f
=

=∑ . Localisation tensors are therefore identical for all considered inclusions. In this 

considered case, following expressions hold true: 

( )
( )

1

1

:

: : : : :

I I

I I I I I

−

−

= + ∆

= + ∆ ∆ ∆

R I T c

r I T c T R Tβ = ββ = ββ = ββ = β
                                                                            (8) 

Consequently, localisation tensors with respect to the imposed macroscopic thermo-
mechanical loading (E  and θ ) introduced as :I I Iθ= +A E aεεεε  leads to:  

( ) 1

:

M I

M M I

f

f

−
 = − − 

= −

I I R

a A r

ΑΑΑΑ
                                                                                                          (9) 

For the matrix and:  

( )

( )

1
1 :

1
: : 1 :

I I

I I I I I I I M I M

f

f
f f

f

−
 = + − ∆ 

−= − = − = −

I T c

a r A r r A r A r = a

ΑΑΑΑ
                                                 (10) 

for all inclusions. Accordingly, global thermo-elastic properties of the composite are deduced 
from following relations: 

( ) ( )
: : :

: : :

GMT M I M I M

GMT M I M M I M

f f

f f

= + ∆ = + ∆

 + ∆ − ∆ = + ∆ + ∆ 

C c c A c c R A

c a c A r + aβ β β β ββ β β β ββ β β β ββ β β β β=
                                       (11) 

 
3 Applications 
3.1 Influence of topology and morphology of reinforcements 
This section aims to analyse predictions of the proposed model. Especially, the estimation of 
equivalent thermo-elastic properties as a function of reinforcements' topology and 
morphology is performed. 
 A cubic topology of reinforcements is analysed. Only the first neighbours, i.e. 26 J-inclusions 
surrounding a selected I-inclusion, are taken into account. A typical spatial arrangement of 
such a composite is illustrated in Fig. 1b. The same figure indicates the main geometric 
parameters introduced in this study. a, b and c are semi-axes of the ellipsoidal reinforcement 
and d the distance between poles of two adjacent inclusions. This distance is supposed to be 
the same in 1e

�

, 2e
�

 and 3e
�

 directions. Moreover, to simplify analysis, only the case of 

inclusions with circular cross section is considered (a b= ) and two dimensionless parameters, 
namely /c aκ =  and /d aδ =  are introduced. Computed simulations concern a composite 
material made of an Aluminium matrix reinforced by silicon carbide inclusions. Thermo-
elastic properties are assumed isotropic for both phases are gathered in Table 1. 

Property Inclusion (SiC) Matrix (Al)  
Young's modulus (GPa) 700 70 

Poisson's ratio 0.27 0.3 
CTE  (10-6 K-1) 4 21 

Table 1. Mechanical properties of the local phases 
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Considered reinforcements are supposed spherical (1κ = ) and consequently the tensor of 
global elastic properties is expected to possess cubic material symmetries. In such a situation, 
the elastic anisotropy of the material can be estimated by the following parameter: 

1111

1122 12122

GMT

C GMT GMT

C
A

C C
=

+
 the value of which is guessed to be influenced by δ  related to the 

volume fraction f of reinforcement.                 

 
a) Variations of CA  as a function of the parameter δ  

b) Evolution of ,EA Aα and Aβ in function of κ for 

f=0.0122 
 

Figure 2. Variation of coefficients of anisotropy 
 

Fig. 2a shows the evolution of this anisotropy parameter CA  as a function of δ . For relatively 

close reinforcements 2δ ≤ , or important volume fraction 0.065f ≥ , the effective elastic 

behaviour appears anisotropic ( 1CA > ). The anisotropy coefficient CA  tends to 1 with an 

increasing δ . Obviously, this limit value of CA  corresponds to isotropic materials. For4δ > , 

the relative distance between spherical inclusions becomes large enough to neglect mutual 
interactions of neighbouring reinforcements. For such configurations, predicted tensor of 
elastic moduli exhibits quasi-isotropic properties and tends to the solution of the classical one-
site Mori-Tanaka model. 
Predictions of the advocated model have also been analysed in light of the morphology of 
reinforcements. For this purpose, elongated ellipsoidal inclusions with circular cross-sections 
are considered. To characterise the inclusion morphology, the ratio /c aκ =  has been varied. 
Large range of κ  has been covered. Since the expected global behaviour of such a composite 
has no cubic symmetry, the anisotropy of its thermo-elastic properties is evaluated in terms of 
following factors: 

3 1111

1 3333

GMT

E GMT

E S
A

E S
= =

; 

33

11

GMT

GMT
Aα

α
α

=
 

33

11

GMT

GMT
Aβ

β
β

=
  

Reported simulations concern a fixed volume fraction 0.0122f ≈ . This relatively weak 
volume fraction has been chosen to limit the influence of the topological microstructure. As it 
has been concluded in the previous paragraph, for such relative distances between 
reinforcements, interactions of the adjacent inclusions are practically negligible. Fig. 2b 
depicts the evolution of the anisotropy coefficients as functions of the morphology κ . 
Effective thermo-elastic properties are evidently affected by the shape of considered 
inclusions. The initial values of the anisotropy coefficients, for 1κ = , are close to 1 revealing 
the quasi-isotropic behaviour in the case of spherical reinforcements. They sharply evolve for 
1 20κ≤ ≤ . This evolution becomes practically insignificant for 300κ > . Such tendency is in 
agreement with the behaviour suggested by Hutchinson [10]. 
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3.2 Implementation of the thermo-elastic behaviour in a finite elements code 
In this section, the implementation of a thermo-elastic constitutive law in a finite element 
code is presented. The proposed model is implemented in the finite element code ABAQUS ® 
standard via the user subroutine UMAT. First, the thermo-elastic properties of equivalent 
material must be determined for each integration point, according to its temperature. Our goal 
is, for a given time increment, to determine the evolution of all mechanical fields discussed in 
the preceding section. The procedure used by ABAQUS ®, as the majority of finite element 
codes, is a numerical treatment by iterations of a discredited version of the principle of virtual 
power (PVP). 
Let’s assume that for a current time [ ]0,nt T∈

,
 following data are converged: 

• , ,e
n n n

θE E E : converged values of the total, elastic and thermal strains respectively,  

• ∆E : an increment of total strain. 

At the beginning of each increment, the temperature of the material is updated to the value 
corresponding to the end of the step 1n+ : 

1n nθ θ θ+ = + ∆                                                                                                                          (12) 

Being a loosely coupled thermo-mechanical problem, this temperature does not change 
during the Newton-Raphson process for converged solution. Whereupon, following 
mechanical parameters are computed via the developed model: 1

GMT
n+C , 1 1orGMT GMT

n n+ +ββββα , 1
I
n+A , ,

1
M
n+A  , 1

I
n+a  and 1

M
n+a . After that, some variables have to be updated as follows: 

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

,

,

: ,

GMT GMT e
n n n n n n n

e e e
n n n n

GMT e GMT
n n n n n n n n

θ θ

θ θ θ

θ θ+ + + + + +

+ + + +

+ + + + + +

= + ∆ ∆ = ∆ + ∆ ∆ = ∆ − ∆

= + ∆ = + ∆

∆ ∆ + ∆ = ∆

n

n n

E E, E E E E

E E E E E E

= C : E C +

Ε α αΕ α αΕ α αΕ α α

Σ Σ Σ Σ ΣΣ Σ Σ Σ ΣΣ Σ Σ Σ ΣΣ Σ Σ Σ Σ
                                  (13) 

From the localisation tensor introduced by Eq. (10), local strain and stress fields can then be 
computed for reinforcements for example: 

1 1 1 1 1 1

1 1

: :I I I I I
n n n n n n n n

I I I
n n n

θ θ+ + + + + +

+ +

∆ = ∆ + ∆ + ∆ + ∆

= + ∆

A E A E a aεεεε
ε ε εε ε εε ε εε ε ε

                                                                (14) 

and: 

1 1 1 1 1 1

1 1

: :I I I I I I I
n n n n n n n n

I I I
n n n

θ θ+ + + + + +

+ +

∆ = ∆ − ∆ + ∆ − ∆

= + ∆

c cσ ε β ε βσ ε β ε βσ ε β ε βσ ε β ε β
σ σ σσ σ σσ σ σσ σ σ

                                                                (15) 

In this thermo-elastic problem, the consistent algorithmic module is the Mori-Tanaka tensor 
GMTC of effective elastic moduli of the homogeneous equivalent material (HEM). 

 
3.3 Finite Elements validation 
The flip chip assembly (Fig. 3a) has significant advantages over other microelectronic 
packaging technologies. It is a high-density and high reliability interconnection technology 
designed for System-In-Package (SIP) and 3D-WLP (Wafer Level Packaging) applications. 
The considered flip-chip assembly consists of three layers: a substrate in fused quartz, a die in 
silicon and an interconnection layer formed by indium solder bumps coated with epoxy glue. 
The most important difficulty to model such a structure is the tremendous number of indium 
bumps due to the periodic structure of the flip-chip. The undesired deflection appearing on the 
quartz substrate during hybridisation of the components is our main concern.  In order to test 
the relevance of the proposed thermo-elastic model and its implementation, a configuration 
with only a few balls is considered. Two FE models are built, namely the exact geometric 
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modelling taking into account the existing ball
consisting of the indium bumps and the underfill (epoxy) is replaced by 
homogeneous material whose equivalent thermo
proposed modelling (see fig. 3b)
 

 
 
 

a) Numerical model
 

For the range of tested temperature (293K to 400K) and due to amplitude of the remote 
loading, it is assumed that fused silica and silicon behave in purely elastic manner. The 
behaviours of indium and epoxy are also assumed elastic in this analysis. Corresponding 
properties of constituents of the flip
350 and 400K. 

 Coefficient of thermal 
expansion (10

Temperature 293 K 350 K
Fused quartz 0.461 0.57

Silicon 2.527 2.97
Indium 29.2 32 
Epoxy 73 100

Table 3. Thermo
 
The footprint of these chips is: 
thick and the interconnection layer (indium solder bumps + epoxy) thickness is 8 
All specimens were meshed using ABAQUS finite element code. Due to symmetries of the 
problem, only ¼ of the package is modelled using 8
library.  
The thermo-mechanical boundary conditions applied to the model are illustrated in Fig. 3b. 
•Mechanical boundary conditions: Faces 1 and 2:

and corner node: 0zU =  

•Thermal boundary conditions: cooling from 430K to 293K 

The finite element mesh is shown in Figure 4a. Two numerical models of the flip
assembly have been considered: 

• model with indium balls and epoxy (fig. 4) and,
• model with homogeneous equivalent material representing indium balls and epoxy 

layer (fig. 5). 
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g into account the existing balls and  the simplified model for which the layer 
consisting of the indium bumps and the underfill (epoxy) is replaced by 
homogeneous material whose equivalent thermo-elastic properties are determined through the 
proposed modelling (see fig. 3b) 

 

Numerical model 

  

 
b) Boundary conditions 

Figure 3. Flip chip assembly 
 

For the range of tested temperature (293K to 400K) and due to amplitude of the remote 
loading, it is assumed that fused silica and silicon behave in purely elastic manner. The 

epoxy are also assumed elastic in this analysis. Corresponding 
properties of constituents of the flip-chip are listed in Tab.3 for three temperatures T= 293, 

 
Coefficient of thermal 
expansion (10-6 K -1) 

Young’s modulus (GPa) 

350 K 400 K 293 K 350 K 400 K 293 K
0.57 0.61 72.595 73.376 73.983 0.17
2.97 3.25 130.43 129.88 129.4 0.276

 33 13.684 11.496 9.584 0.469
100 139 3.664 4.2 4.5 0.258

Thermo-elastic parameters of flip chip assembly materials

The footprint of these chips is: 150 x 150 µm2. The silicon and fused silica layers are 
thick and the interconnection layer (indium solder bumps + epoxy) thickness is 8 
All specimens were meshed using ABAQUS finite element code. Due to symmetries of the 
problem, only ¼ of the package is modelled using 8-node hexahedral elements of ABAQUS

mechanical boundary conditions applied to the model are illustrated in Fig. 3b. 
•Mechanical boundary conditions: Faces 1 and 2: 0 and 0x yU U= =  (Planes of symmetry) 

dary conditions: cooling from 430K to 293K  

The finite element mesh is shown in Figure 4a. Two numerical models of the flip
assembly have been considered:  

model with indium balls and epoxy (fig. 4) and, 
with homogeneous equivalent material representing indium balls and epoxy 

Silicon 

Fused quartz 
Planes of symmetr

Uz=0 
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s and  the simplified model for which the layer 
consisting of the indium bumps and the underfill (epoxy) is replaced by an equivalent 

elastic properties are determined through the 

 
 

 
 
 
 
 

Boundary conditions  

For the range of tested temperature (293K to 400K) and due to amplitude of the remote 
loading, it is assumed that fused silica and silicon behave in purely elastic manner. The 

epoxy are also assumed elastic in this analysis. Corresponding 
chip are listed in Tab.3 for three temperatures T= 293, 

Poisson’s ratio 

293 K 350 K 400 K 
0.17 0.172 0.174 
0.276 0.276 0.276 
0.469 0.474 0.45 
0.258 0.32 0.3 

elastic parameters of flip chip assembly materials 

. The silicon and fused silica layers are 10µm 
thick and the interconnection layer (indium solder bumps + epoxy) thickness is 8 µm. 
All specimens were meshed using ABAQUS finite element code. Due to symmetries of the 

node hexahedral elements of ABAQUS 

mechanical boundary conditions applied to the model are illustrated in Fig. 3b.  
(Planes of symmetry) 

The finite element mesh is shown in Figure 4a. Two numerical models of the flip-chip 

with homogeneous equivalent material representing indium balls and epoxy 

HEM 

ymmetry  
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a) Model with solder 
bumps 

 
b) 100 solder bumps + 
epoxy 

 
c) 10 x10 bumps in 
pitch of 15µm x 15µm 

 
d) Epoxy 

Figure 4. Geometrically  exact  model (intermediate layer composed of indium balls + epoxy, 117628 elements) 
 

 
Figure 5. Model with homogeneous equivalent material (78750 elements) 

 

a) Model with solders bumps                                                  b) Model with HEM 

Figure 6. Vertical displacement of two samples 
 
Fig. 6 summarises the obtained results in terms of the vertical displacement of the assembly. 
The maximum vertical displacement on quartz for the exact model with indium balls and 
epoxy is about 0.1779µm while that provided by the model with equivalent material is 
0.1725µm. The relative difference between the two numerical models is 3%. The developed 
homogenisation model seems relevant to well describe the macroscopic behaviour of the flip-
chip assembly.  
Analysing the von-Mises stress field in the indium bumps as depicted by fig. 7, similar 
contours for both approaches can be noticed. The maximum values are localised at interfaces 
between the bumps and the substrates and are liable to induce failures in these assemblies 
(disconnection, cracks ...). Currently these types of electronics assembly have a very large 
number of solder bumps (1024 x 1024 indium balls) which makes it nearly impossible to 
model. The proposed approach has the main advantage to allow this kind of simulations. 
 

 

 
a) Model with solders bumps                                                  b) Model with HEM 

Figure 7. Von Mises stress in the solder bumps 



ECCM15 - 15TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Venice, Italy, 24-28 June 2012 

 

8 
 

 
Conclusion 
Based on the integral equation established in thermo-elasticity, a general model of predictions 
of the effective properties of composites with ellipsoidal reinforcements and taking into 
account their morphology and topology is proposed. Thus, a multi-site Mori-Tanaka thermo-
elastic scheme has been derived from this solution. A particular model for two-phase 
composite with periodic arrangement of inclusions has been deduced from the latter one. To 
uncouple the effect of inclusions' morphology and topology on resulting composite 
anisotropy, calculations have been performed for two distinct configurations. First one 
concerned composites with isotropic (spherical) inclusions, the second one with ellipsoidal 
elongated and sufficiently separated inclusions. We then apply our model to an electronic 
assembly (flip-chip) consisting of an interconnection layer treated as a two-phase 
composite. The implementation of the predicted constitutive law of the equivalent 
homogeneous material of the interconnection layer was made in the Abaqus 
finite element software. The simulations were performed on two models: one containing 
100 indium bumps embedded in epoxy matrix and the other with the equivalent homogeneous 
material. A relative difference of 3% was found for predicted values of vertical displacement. 
This precision proves the relevance of the developed homogenisation model and its 
implementation into finite elements software.  
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