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Abstract
This work is concerned with the effect of the damage on the torsional buckling of CFRP

drive shafts. A buckling shell theory is developed to investigate this effect. This one is based on
Flügge’s shell theory, laminate theory and Flügge’s solution for long tubes assumption. In a first
step, the effect of damage on buckling torque is simply obtained by decreasing the transverse
and shear modulus. Then, an iterative procedure including a damage model is considered to
show the evolution of the buckling torque during the increase of static torque. The damage
decreases the buckling load of all laminates studied but with various proportions.

1 Introduction
Since the 1970s, composite materials have been regarded as potential candidates for man-

ufacturing drive shafts of many kinds because of their high: specific stiffness and strength.
Because these composite shafts are thin and subjected to torsion load, a risk of torsional buck-
ling exists. This work is concerned with the effect of the carbon/epoxy damage on the torsional
buckling load. In this case, the material damage (matrix micro-cracking, fibre/matrix debond-
ing, transverse rupture) can have two origins. The first one is simply due to torsion load up to
buckling (influence of prebuckling deformations and stresses). The second one is due to the ro-
tation of the drive shaft. For example, when a shaft operate above the first critical speed, in the
so-called supercritical regime, a repetitive bending appears at each acceleration and deceleration
operations. The damage modify the modulus as the buckling load.

The finite element method is the most frequently employed method of computing torsional
buckling. However, it is suitable a method requiring less computing time for the optimisation
of carbon/epoxy drive shaft [1, 2]. Shell theory is used here. Laminate theory is included in
Flügge’s shell equations [3]. Assuming that we are dealing with a long cylinder, we can solve
the shell equations with the simplified displacement field proposed by Flügge [3]. A simple
way to model damage is to decrease the ply modulus concerned (transverse and shear). A
conservative approach is obtain when the damage variables are taken to the minimum observed
experimentally. A more complete approach is to consider an iterative procedure including a
damage model [4]. Then it is possible to apply any path of load to create the damage before
torsional buckling.
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2 Composite damage modeling
The damage is only considered in the plane of the ply and expressed in terms of loss of

stiffness

E1 = E0
1 (1− d1) with d1 ∈ [0, 1] (1)

E2 = E0
2 (1− d2) with d2 ∈ [0, 1] (2)

G12 = G0
12 (1− d12) with d12 ∈ [0, 1] (3)

where d1, d2 and d12 are the damage in axial, in transverse and in shear directions, respect-
ively. These damage variables are initialy null then E0

1 , E0
2 and G0

12 are initial stiffness in axial,
in transverse and in shear directions, respectively.

Assuming that we are dealing with plane stresses and small perturbations assumptions, the
local strain energy of each ply can be written in terms of stresses as follows [4]
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where 〈.〉+ and 〈.〉− stand for positive part and negative part. Noting that there is no dam-
age during compressive steps. Thermodynamic forces associated to internal variables can be
deduced from strain energy

Ydj =
∂E

∂dj
=

〈σj〉2+
2E0

j (1− dj)
2 j ∈ {1, 2} (5)

Yd12 =
∂E

∂d12
=

σ2
12

2G0
12 (1− d12)

2 (6)

The coupling mechanism between damage in transverse and shear direction is accounted for
by an equivalent thermodynamic force

Yeq = aY m
d2

+ bY n
d12

(7)

where a, b, m and n are material parameters.
The damage variables are defined relatively to the material behaviour. In the fiber direction,

the brittle fracture is described with a threshold model

d1 = 1 if Yd1 > Y max
d1

(8)

The damage in the transverse direction is based on a statistic law [5]

d2 =
〈
1− e−(Yeq−Y0)

〉
+

with ḋ2 ≥ 0 (9)

The damage mechanisms like matrix micro-cracking decrease the transverse and shear stiff-
ness at the same time. Accordingly, the damage in shear direction is assumed to be proportional
to the previous one

d12 = cd2 (10)

3 Torsional buckling analysis
The finite element method is the most frequently employed method of computing torsional

buckling. However, it is suitable here a method requiring less computing time. The other pos-
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sibility consists in solving the buckling shell theory in the case of orthotropic circular cylinders.
Flügge’s buckling shell theory for cylinder is used here [3]. Equilibrium equations can be writ-
ten in the following form

Nx,x +Nyx,x − 2Tu,xy = 0

Ny,y +Nxy,y +
1

r
(Mxy +My),y − 2T

(
v,xy +

w,x

r

)
= 0

Mx,xx + (Myx +Mxy),xy +My,yy −
Ny

r
+ 2T

(v,x
r

+ w,xy

)
= 0

whereNx andNy are normal forces per unit thickness,Nxy andNyx are shear forces per unit
thickness, T is the torque, r is the medium radius and (u, v, w) is the middle-surface cylinder
displacement field.

The laminate theory is included in the shell equations as it can be seen in [6]. It gives the
equilibrium equations of the torsional buckling problem for a circular cylinder with orthotropic
properties (
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(a) Flügge’s displacement field for torsional buckling of
long cylinder (first mode)

(b) First mode of torsional buckling of a composite tube
in ABAQUS

Figure 1: Graphical representations of torsional buckling
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with _′ = r∂_/∂x , _̇ = ∂_/∂ϕ and where A, B and D are the classical stiffness matrix of
the laminate.

Because we are dealing with very long shaft, it is possible to neglect the boundary condition
effects. In this case, a simplified displacement field proposed by Flügge can be used

u = a sin(hϕ+
pπx

l
), v = b sin(hϕ+

pπx

l
), w = c cos(hϕ+

pπx

l
) (14)

where h is the number of half-wave along the cylinder circumference and p is the number of
half-wave along the cylinder axis of fictive length l. The first mode is represented in the Fig.
1a.

When this displacement field is applied to the shell equations, a classical eigenvalue problem
is obtained

K.U = 0 with U =

ab
c

 (15)

where K is the stiffness matrix
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with λ = pπr/l. A non-trivial solution exists when the determinant of K is null.
An efficient numerical method is implemented to reduce the computing time in the GA

of [2]. The method consist in finding the minimun value of Tbuck that cancel the determinant
of K. The determinant depends also on two other unknowns which are h ∈ N∗and p ∈ R∗+.
Numerically, it is observed that the minimum value of buckling torque is always obtain for
h = 2. A time-expensive method consist in searching the values of Tbuck which cancel the
determinant for all values of p and then to find the minimum of Tbuck. A less expensive approach
is to consider the value of p = l (48e2/12r2)

1/4
/πr obtained by Flügge for the isotropic material

case but this method can lead to large errors in some cases. Nevertheless, the exact value of p
can be search around the above value. Because we have observed that the determinant can
be assumed linear in T around Tbuck, only some computations are necessary if we previously
estimate the value of Tbuck with an analytic criterion like the Hayashi’s criterion

Tbuck = 11
√
r

(
A11 −

A2
12

A22

)1/4

D
3/4
22 (27)

It should be noted that this criterion like other classical criteria do not account for the coup-
ling mechanism involved in unsymmetrical laminates.

4 Results
4.1 Buckling with initialy damaged tubes

The shell method is tested on unsymmetrical stacking sequences in Table 1 and compared
to the finite element method in case without damage effects. In the table, all the tubes have
the same size and the laminate all have the same thickness. The results obtained with the finite
element method using ABAQUS (s4 elements) [7], which were previously validated in [8] based
on experimental results obtained by [9], are taken as reference values. An example of a buckling
mode is given in the Figure 1b to show the effect of boudary conditions. The results obtained
with shell theory show good agreement with finite element calculation giving a conservative
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Table 1: Buckling torque of carbon/epoxy laminate tubes: comparison between methods of
computation and effect of damage (l = 4 m, rm = 40 mm, E11 = 134 GPa, E22 = 8.5 GPa,
E66 = E55 = 4.6GPa, E44 = 4.0 GPa, E12 = 0.29, es = 1.067 mm)

Laminate ABAQUS Flügge with laminate theory
d2 = d12 = 0 0 0.5 0.8
N° Mesha Nm Nm error % Nm % Nm %
1 [15,-15]4 60-150 210 193 -8 117 -39 64 -67
2 [30,-30]4 60-150 263 254 -4 185 -27 135 -47
3 [45,-45]4 60-150 385 383 -1 311 -19 251 -34
4 [02,45,-45,45,-45,02] 60-150 230 218 -5 155 -29 114 -48
5 [02,45,0,-45,0,45,-45] 30-100 358 342 -4 277 -19 232 -32
6 [45,15,-15,-45,-15,15,45,-45] 60-150 439 449 2 393 -12 358 -20

a Number of circumferential elements - number of lengthwise elements.

Figure 2: Algorithm to compute torsional buckling with damage effect

estimate on the whole. The largest errors amount to only 8% and the mean error is 4%. Note
that it is shown in [8] that the long tube assumption investigated here, is useful when the length-
to-diameter ratio is greater than 100 and the diameter-to-thickness ratio is greater than 40.

The buckling load is then computed on previously damaged tubes. This damage can be due,
for example, to repetitive flexural oscillations. The damages variables d2 and d12 are assumed
to be equal to 0.5 and 0.2, successively (Tab. 1). Comparatively to the case of a tube without
damage, the buckling torque can be highly reduced. This load is divide by three in the case of a
[15,−15]4 laminate with 80% of damage in transverse and in shear directions. The influence is
only of 20% in the case N°6.
4.2 Buckling with initialy undamaged tubes

In this case, the damage model is added to the buckling torque computation. The principle
is represented in the Figure2. The algorithm is implemented in Matlab [10]. In particular, the
non-linear damage problem is solved with a medium-scale algorithm of “fsolve”. The influence
of damage is shown on a [02, 902]s shaft (Fig. 3). Here the buckling torque is decreased by a
value of 19%.
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Figure 3: Evolution of buckling torque with the increase of static torque on a [02, 902]s shaft
(rm = 26 mm, E11 = 116.4 GPa, E22 = 9.5 GPa, E66 = 5.0GPa, E12 = 0.31, es = 1 mm,
a = 1, b = 1.85, c = 1, m = 1, n = 1 and Y0 = 0)

5 Conclusion
The results obtained with Flügge’s theory on long tubes with laminate theory show good

agreement with finite element calculation giving a conservative estimate on the whole. The
method with the damage is then applied on several classical laminates. The damage decreases
the buckling load of all laminates studied. The results show that damage effect on the buckling
torque cannot be ignore if the drive-shaft is subject to bending fatigue. The damage effect is
more significant for laminates including 0° and 90° plies.
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